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Abstract

We propose a new weakly-supervised structured learning approach for recogni-
tion and spatio-temporal localization of actions in video. As part of the proposed
approach we develop a generalization of the Max-Path search algorithm, which
allows us to efficiently search over a structured space of multiple spatio-temporal
paths, while also allowing to incorporate context information into the model. In-
stead of using spatial annotations, in the form of bounding boxes, to guide the
latent model during training, we utilize human gaze data in the form of a weak
supervisory signal. This is achieved by incorporating gaze, along with the classi-
fication, into the structured loss within the latent SVM learning framework. Ex-
periments on a challenging benchmark dataset, UCF-Sports, show that our model
is more accurate, in terms of classification, and achieves state-of-the-art results in
localization. In addition, we show how our model can produce top-down saliency
maps conditioned on the classification label and localized latent paths.

1 Introduction

Structured prediction models for action recognition and localization are emerging as prominent al-
ternatives to more traditional holistic bag-of-words (BoW) representations. The obvious advantage
of such models is ability to localize, spatially and temporally, an action (and actors) in potentially
long and complex scenes with multiple subjects. Early alternatives [3, 7, 14, 26] address this chal-
lenge using sub-volume search, however, this implicitly assumes that the action and actor(s) are
static within the frame. More recently, [9] and [17, 18] propose figure-centric approaches that can
track an actor by searching over the space of spatio-temporal paths in video [18] and by incorporat-
ing person detection into the formulation [9]. However, all successful localization methods, to date,
require spatial annotations in the form of partial poses [13], bounding boxes [9, 18] or pixel level
segmentations [7] for learning. Obtaining such annotations is both time consuming and unnatural;
often it is not easy for a human to decide which spatio-temporal segment corresponds to an action.

One alternative is to proceed in a purely unsupervised manner and try to mine for most discriminant
portions of the video for classification [2]. However, this often results in overfitting due to the rela-
tively small and constrained nature of the datasets, as discriminant portions of the video, in training,
may correspond to regions of background and be unrelated to the motion of interest (e.g., grass may
be highly discriminative for “kicking” action because in the training set most instances come from
soccer, but clearly “kicking” can occur on nearly any surface). Bottom-up perceptual saliency, com-
puted from eye-gaze of observers (obtained using an eye tracker), has recently been introduced as
another promising alternative to annotation and supervision [11, 20]. It has been shown that tradi-
tional BoW models computed over the salient regions of the video result in superior performance,
compared to dense sampling of descriptors. However, this comes at expense of losing ability to
localize actions. Bottom-up saliency models usually respond to numerous unrelated low-level stim-
uli [24](e.g., textured cluttered backgrounds, large motion gradients from subjects irrelevant to the
action, etc.) which often fall outside the region of the action (and can confuse classifiers).
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In this paper we posit that a good spatio-temporal model for action recognition and localization
should have three key properties: (1) be figure-centric, to allow for subject and/or camera motion,
(2) discriminative, to facilitate classification and localization, and (3) perceptually semantic, to mit-
igate overfitting to accidental statistical regularities in a training set. To avoid reliance on spatial
annotation of actors we utilize human gaze data (collected by having observers view correspond-
ing videos [11]) as weak supervision in learning1. Note that such weak annotation is more natural,
effortless (from the point of view of an annotator) and can be done in real-time. By design, gaze
gives perceptually semantic interest regions, however, while semantic, gaze, much like bottom-up
saliency, is not necessarily discriminative. Figure 1 (b) shows that while for some (typically fast)
actions, like “diving”, gaze may be well aligned with the actor and hence discriminative, for others,
like “golf” and “horse riding”, gaze may either drift to salient but non discriminant regions (the ball),
or simply fall on background regions that are prominent or of intrinsic aesthetic value to observer.

To deal with complexities of the search and ambiguities in the weak-supervision, given by gaze,
we formulate our model in max-margin framework where we attempt to infer latent smooth spatio-
temporal path(s) through the video that simultaneously maximize classification accuracy and pass
through regions of high gaze concentration. During learning, this objective is encouraged in the
latent Structural SVM [25] formulation through a real-valued loss that penalizes miss-classification
and, for correctly classified instances, miss-alignment with salient regions induced by the gaze. In
addition to classification and localization, we show that our model can provide top-down action-
specific saliency by predicting distribution over gaze conditioned on the action label and inferred
spatio-temporal path. Having less (annotation) information available at training time, our model
shows state-of-the art classification and localization accuracy on the UCF-Sports dataset and is the
first, to our knowledge, to propose top-down saliency for action classification task.

2 Related works

Action recognition: The literature on vision-based action recognition is too vast. Here we focus
on the most relevant approaches and point the reader to recent surveys [19, 23] for a more complete
overview. The most prominent action recognition models to date utilize visual BoW representations
[10, 21] and extensions [8, 15]. Such holistic models proved to be surprisingly good at recognition,
but are, by design, incapable of spatial or temporal localization of actions.

Saliency and eye gaze: Work in cognitive science suggests that control inputs to the attention mech-
anism can be grouped into two categories: stimulus-driven (bottom-up) and goal-driven (top-down)
[4]. Recent work in action recognition [11, 20] look at bottom-up saliency as a way to sparsify
descriptors and to bias BoW representations towards more salient portions of the video. In [11] and
[20] multiple subjects were tasked with viewing videos while their gaze was recorded. A saliency
model is then trained to predict the gaze and is used to either prune or weight the descriptors. How-
ever, the proposed saliency-based sampling is purely bottom-up, and still lacks ability to localize
actions in either space or time2. In contrast, our model is designed with spatio-temporal localiza-
tion in mind and uses gaze data as weak supervision during learning. In [16] authors propose the
use of “objectness” saliency operator as weak supervision, however, again, the saliency is bottom-
up and task independent. The top-down discriminative saliency, based on distribution of gaze, in
our approach, allows our model to focus on perceptually salient regions that are also discriminative.
Similar in spirit, in [5] gaze and action labels are simultaneously inferred in ego-centric action recog-
nition setting. While conceptually similar, the model in [5] is significantly different both in terms of
formulation and use. The model [5] is generative and relies on existence of object detectors.

Sub-volume search: Spatio-temporal localization of actions is a difficult task, largely due to the
computational complexity of search involved. One way to alleviate this computational complexity
is to model the action as an axis aligned rectangular 3D volume. This allows spatio-temporal search
to be formulated efficiently using convolutions in the Fourier [3] or Clifford Fourier [14] domain. In
[27] an efficient spatio-temporal branch-and-bound approach was proposed as alternative. However,
the assumption of single fixed axis aligned volumetric representation is limiting and only applica-
ble for well defined and relatively static actions. In [7] an extension to multiple sub-volumes that

1We assume no gaze data is available for test videos.
2Similar observations have been made in object detection domain [24], where purely bottom-up saliency

has been shown to produce responses on textured portions of the background, outside of object of interest.

2



(a) (b)

Figure 1: Graphical model representation is illustrated in (a). Term φ(x,h) captures information
about context (all the video excluding regions defined by latent variables h); terms ψ(x, hi) capture
information about latent regions. Inferred latent regions should be discriminative and match high
density regions of eye gaze data. In (b) ground truth eye gaze density, computed from fixations of
multiple subjects, is overlaid over images from sequences of 3 different action classes (see Sect. 1).

model parts of the action is proposed and amounts to a spatio-temporal part-based (pictorial struc-
ture) model. While part-based model of [7] allows for greater flexibility since parts are allowed
to move with respect to one another, the remaining axis-aligned nature of part sub-volumes is still
largely appropriate for recognition in scenarios where camera and subject are relatively static. This
constraint is slightly relaxed in [12] where a part-based model built based on dense trajectory clus-
tering is proposed. However, [12] relies on sophisticated pre-processing which requires building
long feature trajectories over time, which is difficult to do for fast motions or less textured regions.

Most closely related approaches to our work come from [9, 17, 18]. In [17] Tran and Yuan show
that a rectangular axis-aligned volume constraint can be relaxed by efficiently searching over the
space of smooth paths within the spatio-temporal volume. The resulting Max-Path algorithm is
applied to object tracking in video. In [18] this approach is further extend by incorporating Max-
Path inference into a max-margin structured output learning framework, resulting in an approach
capable of localizing actions3. We generalize Max-Path idea by allowing multiple smooth paths and
context within a latent max-margin structured output learning. In addition, our model is trained to
simultaneously localize and classify actions. Alternatively, [9] uses latent SVM to jointly detect an
actor and recognize actions. However, in practice, [9] relies on human detection for both inference
and learning and only sub-set of frames can be localized due to the choice of the features (HOG3D).
Similarly, [2] relies on person detection and distributed partial pose representation, in the form of
poselets, to build a spatio-temporal graph for action recognition and localization. We want to stress
that [17, 18], [9] and [2] require bounding box annotations for actors in learning. In contrast, we
focus on weaker and more natural source of data – gaze, to formulate our learning criteria.

3 Recognizing and Localizing Actions in Videos

Our goal is to learn a model that can jointly localize and classify human actions in video. This prob-
lem is often tackled in the same manner as object recognition and localization in images. However,
extension to a temporal domain comes with many challenges. The core challenges we address are:
(i) dealing with a motion of the actor within the frame, resulting from camera or actor’s own motion
in the world; (ii) complexity of the resulting spatio-temporal search, that needs to search over the
space of temporal paths; (iii) ability to model coarse temporal progression of the action and action
context, and (iv) learning in absence of direct annotations for actor(s) position within the frame.

To this end, we propose a model that has the ability to localize temporally and spatially discrimi-
native regions of the video and encode the context in which these regions occur. The output of the
model indicates the absence or presence of a particular action in the video sequence while simulta-
neously extracting the most discriminative and perceptually salient spatio-temporal video regions.
During the training phase, the selection of these regions is implicitly driven by eye gaze fixations
collected by a sample of viewers. As a consequence, our model is able to perform top-down video
saliency detection conditioned on the performed action and localized action region.

3However, no action classification results are shown.
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1 Model Formulation

Given a set of video sequences {x1, . . . ,xn} ⊂ X and their associated labels {y1, . . . , yn}, with
yi ∈ {−1, 1}, our purpose is to learn a mapping f : X → {−1, 1}. Additionally, we introduce aux-
iliary latent variables {h1, . . . ,hn}, where hi = {hi1, . . . , hik} and hip ∈ ∅∪{(lj , tj , rj , bj)Te

j=Ts
}

denotes the left, top, right and bottom coordinates of spatio-temporal paths of bounding boxes that
are defined from frame Ts up to Te. The latent variables h specify the spatio-temporal regions
selected by our model. Our function is then defined y∗x(w) = f(x;w), where

(y∗x(w),h∗x(w)) = argmax
(y,h)∈{−1,1}×H

F (x, y,h;w), F (x, y, h;w) = wTΨ(x, y,h), (1)

and Ψ(x, y,h) ∈ Rd is a joint feature map. Video sequences in which the action of interest is absent
are treated as zero vectors in the Hilbert space induced by the feature map Ψ similar to [1]. Whereas,
the corresponding feature map of videos where the action of interest is present is being decomposed
into two components: a) the latent regions and b) context regions. As a consequence, the scoring
function is written:

F (x, y = 1, h;w) = wTΨ(x, y = 1,h) = wT0 φ(x,h) +
K∑
k=1

wTk ψ(x, hk) + b (2)

where K is the number of latent regions of the action model and b is the bias term. A graphical
representation of the model is illustrated in Figure 1.

Latent regions potential wTk ψ(x, hk): This potential function measures the compatibility of latent
spatio-temporal region hk with the action model. More specifically, ψ(x, hk) returns the sum of
normalized BoW histograms extracted from the bounding box defined by the latent variable hk =
(lj , tj , rj , bj)Te

j=Ts
at each corresponding frame.

Context potential wT0 φ(x,h): We define context as the entire video sequence excluding the latent
regions; our aim is to capture any information that is not directly produced by the appearance and
motion of the actor. The characteristics of the context are encoded in φ(x,h) as a sum of normalized
BoW histograms at each frame of the video excluding the regions indicated by latent variables h.

Many action recognition scoring functions recently proposed [9, 12, 16] include the response of a
global BoW statistical representation of the entire video. While such formulations are simpler, since
the response of the global representation is independent from the selection of the latent variables,
they are also somewhat unsatisfactory from the modeling point of view. First, the visual information
that corresponds to the latent region of interest implicitly gets to be counted twice. Second, it is
impossible to decouple and analyze importance of foreground and contextual information separately.

2 Inference

Given the model parametersw and an unseen video x our goal is to infer the binary action label y∗ as
well as the location of latent regions h∗ (Eq. 1). The scoring function for the case of y = −1 is equal
to zero due to the trivial zero vector feature map (Sect. 1). However, estimating the optimal value of
the scoring function for the case of y = 1 involves the maximization over the latent variables. The
search space over even a single spatio-temporal path (non-smooth) of variable size bounding boxes
in a video sequence of width M , height N and length T is exponential: O(MN)2T . Therefore, we
restrict the search space by introducing a number of assumptions. We constraint the search space
to smooth spatio-temporal paths4 of fixed size bounding boxes [17]. These constraints allows the
inference of the optimal latent variables for a single region using dynamic programming, similarly
to Max-Path algorithm proposed by Tran and Yuan [17].

Algorithm 1 summarizes the process of dynamic programming considering both the context and the
latent region contributions. The time and space complexity of this algorithm is O(MNT ). How-
ever, without introducing further constraints on the latent variables, the extension of this forward
message passing procedure to multiple latent regions results in an exponential, in the number of
regions, algorithm because of the implicit dependency of the latent variables through the context

4The feasible positions of the bounding box in a frame are constrained by its location in the previous frame.
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Algorithm 1 MaxCPath: Inference of Single Latent Region with Context
1: Input : R(t): the context local response without the presence of bounding box,

Q0(u, v, t): the context local response excluding the bounding box at location (u, v),
Q1(u, v, t): the latent region local response

2: Output : S(t): score of the best path till frame t, L(t): end point of the best path till t,
P (u, v, t): the best path record for tracing back

3: Initialize S∗ = − inf , S(u, v, 1) = Q0(u, v, 1) +Q1(u, v, 1) +
∑T

i=2 R(i), ∀u, v, l∗ = null

4: for t← 2 to T do // Forward Process, Backward Process: t← T to 2
5: for each (u, v) ∈ [1..M ]× [1..N ] do
6: (u0, v0)← argmax(u′,v′)∈Nb(u,v) S(u, v, t− 1)

7: if S(u0, v0, t− 1) >
∑T

i=1 F (i) then
8: S(u, v, t)← S(u0, v0, t− 1) +Q0(u, v, t) +Q1(u, v, t)− R(t)
9: P (u, v, t)← (u0, v0, t− 1)

10: else
11: S(u, v, t)← Q0(u, v, t) +Q1(u, v, t) +

∑T
i=1 R(i)− R(t)

12: end if
13: if S(u, v, t) > S∗ then
14: S∗ ← S(u, v, t) and l∗ ← (u, v, t)
15: end if
16: end for
17: S(t)← S∗ and L(t)← l∗

18: end for

Algorithm 2 Inference: Two Latent Region with Context
1: Input : R(t): the context local response without the presence of bounding box, Q0(u, v, t): the context local response excluding the

bounding box at location (u, v), Q1(u, v, t): the latent region local response of the first latent region, Q2(u, v, t): the latent region
local response of the second latent region.

2: Output : S∗: the maximum score of the inference, h1, h2: first and second latent regions
3: Initialize S∗ = − inf , t∗ = null
4: (S1, L1, P1)←MaxCPath− Forward(R,Q0, Q1)
5: (S2, L2, P2)←MaxCPath− Backward(R,Q0, Q2)
6: for t← 1 to T − 1 do
7: S ← S1(t) + S2(t+ 1)−

∑T
i=1 R(i)

8: if S > S∗ then
9: S∗ ← S and t∗ ← t

10: end if
11: end for
12: h1 ← traceBackward(P1, L1(t

∗))
13: h2 ← traceForward(P2, L2(t

∗ + 1))

term. Incorporating temporal ordering constraints between the K latent regions leads to a polyno-
mial time algorithm. More specifically, the optimal scoring function can be inferred by enumerating
all potential end locations of each latent region and executing independently Algorithm 1 at each
interval in O(MNTK). For the special case of K = 2, we derive a forward/backward message
process that remains linear in the size of video volume: O(MNT ); see summary in Algorithm 2. In
our experimental validation a model with 2 latent regions proved to be sufficiently expressive.

3 Learning Framework
Identifying the spatio-temporal regions of the video sequences that will enable our model to detect
human action is a challenging optimization problem. While the introduction of latent variables in
discriminative models [6, 9, 12, 13, 22, 25] is natural for many applications (e.g., modeling body
parts) and has also offered excellent performance [6], it also lead to training formulations with non-
convex functions. In our training formulation we adopt the large-margin latent structured output
learning [25], however we also introduce a loss function that weakly supervises the selection of latent
variables based on human gaze information. Our training set of videos {x1, . . . ,xn} along with their
action labels {y1, . . . , yn} contains 2D fixation points (sampled at much higher frequency than the
video frame rate) of 16 subjects observing the videos [11]. We transform these measurements using
kernel density estimation with Gaussian kernel (with bandwidth set to the visual angle span of 2◦)
to a probability density function of gaze gi = {g1i , . . . , g

Ti
i } at each frame of video xi. Following

the Latent Structural SVM formulation [25], our learning takes the following form:

min
w,ξ≥0

1

2
‖w‖2 + C

n∑
i=1

ξi (3)

max
h′i∈H

wTΨ(xi, yi,h
′
i)− wTΨ(xi, ŷi, ĥi) ≥ ∆(yi,gi, ŷi, ĥi)− ξi, ∀ŷi ∈ {−1, 1},∀ĥi ∈ H,
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where ∆(yi,gi, ŷi, ĥi) ≥ 0 is an asymmetric loss function encoding the cost of an incorrect action
label prediction but also of mislocalization of the eye gaze. The loss function is defined as follows:

∆(yi,gi, ŷi, ĥi) =

{
1− 1

K

∑K
k=1 δ(gi, ĥik) if yi = ŷi = 1,

1− 1
2 (yiŷi + 1) otherwise.

(4)

δ(gi, ĥik) indicates the minimum overlap of ĥik and a given eye gaze gi map over a frame:

δ(gi, ĥik) = min
j
δp(b

j
ik, g

j
i ), Ts,k ≤ j ≤ Te,k, (5)

δp(b
j
ik, g

j
i ) =

{
1 if

∑
bjik
gji ≥ r, 0 < r < 1,

1
r

∑
bjik
gji otherwise,

(6)

where bjik is the bounding box at frame j of the k-th latent region in the xi video. The parameter r
regulates the minimum amount of eye gaze “mass” that should be enclosed by each bounding box.
The loss function can be easily incorporated in Algorithm 1 during the loss-augmented inference.

4 Gaze Prediction

Our model is based on the core assumption that a subset of perceptually salient regions of a video,
encoded by the gaze map, share discriminative idiosyncrasies useful for human action classification.
The loss function dictating the learning process enables the model’s parameter (i.e , w) to encode
this notion into our model5. Assuming our assumption holds in practice, we can use selected latent
regions for prediction of top-down saliency within the latent region. We do so by regressing the
amount of eye gaze (probability density map over gaze) on a fixed grid, inside each bounding box
of the latent regions, by conditioning on low level features that construct the feature map ψi and the
action label. In this way the latent regions select consistent salient portions of videos using top-down
knowledge about the action, and image content modulates the saliency prediction within that region.

Given the training data gaze g and the corresponding inferred latent variables h, we learn a linear
regression, per action class, that maps augmented feature representation of the extracted bounding
boxes, of each latent region, to a coarse description of the corresponding gaze distribution. Each
bounding box is divided into a 4 × 4 grid and a BoW representation for each cell is computed;
augmented feature is constructed by concatenating these histograms. Similarly, the human gaze is
summarized by a 16 dimension vector by accumulating gaze density at each cell over a 4 × 4 grid.
For visualization, we further smooth the predictions to obtain a continuous and smooth gaze density
over the latent regions. We find our top-down saliency predictions to be quite good (see Sect. 5) in
most cases which experimentally validated our initial model assumption.

5 Experiments

We evaluate our model on the UCF-Sports dataset presented in [14]. The dataset contains 150 videos
extracted from broadcast television channels and includes 10 different action classes. The dataset
includes annotation of action classes as well as bounding boxes around the person of interest (which
we ignore for training but use to measure localization performance). We follow the evaluation setup
defined in the of Lan et al. [9] and split the dataset into 103 training and 47 test samples. We
employ the eye gaze data made available by Mathe and Sminchisescu [11]. The data captures eye
movements of 16 subjects while they were watching the video clips from the dataset. The eye gaze
data are represented with a probability density function (Sect. 4).

Data representation: We extract HoG, HoF, and HoMB descriptors [12] at a dense spatio-temporal
grid and at 4 different scales. These descriptors are clustered into 3 vocabularies of 500, 500, 300
sizes correspondingly. For the baseline experiments, we use `1-normalized histogram representation.
For the potentials described in Sect. 1, we represent latent regions/context with the sum of per-
frame normalized histograms. Per-frame normalization, as opposed to global normalization over the
spatio-temporal region, allows us to aggregate scores iteratively in Algorithm 1.

5Parameter r of the loss (Sect. 3) modulates importance of gaze localization within the latent region.
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Model Accuracy Localization

Baselines
Global BoW 64.29 N/A
BoW with SS 65.95 N/A
BoW with TS 69.64 N/A

# of Latent Regions
K = 1 K = 2 K = 1 K = 2

Our Model
Region 77.96 82.14 0.29 0.22
Region+Context 77.62 81.31 0.31 0.30
Region+Global 76.78 80.71 0.30 0.30

State-of-the-art

Lan et al. [9] 73.1 0.27
Tran and Yuan [18] N/A 0.54∗

Shapovalova et al. [16] 75.3 N/A
Raptis et al. [12] 79.4 N/A

Table 1: Action classification and localization results. Our model significantly outperforms the
baselines and most of the State-of-the-art results (see text for discussion). ∗Note that the average
localization score is calculated based only on three classes reported in the original paper.

Baselines: We compare our model to several baseline methods. All our baselines are trained with
linear SVM, to make them comparable to our linear model, and use the same feature representation
as described above. We report performance of three baselines: (1) Global BoW, where video is
represented with just one histogram and all the temporal-spatial structure is discarded. (2) BoW
with spatial split (SS), where video is divided by a 2 × 2 spatial grid and parts in order to capture
spatial structure. (3) BoW with temporal split (TS), where the video is divided into 2 consecutive
temporal segments. This setup allows the capture of the basic temporal structure of human action.

Our model: We evaluate three different variants of our model, which we call Region, Re-
gion+Global, and Region+Context. Region: includes only the latent regions, the potentials ψ
from our scoring function in Eq. 1, and ignores the context features φ. Region+Global: the context
potential φ is replaced with a Global BoW, like in our first baseline. Region+Context: represents
our full model from the Eq. 1. We test all our models with one and two latent regions.

Action classification and localization: Results of action classification are summarized in Table 1.
We train a model for each action separately in a standard one-vs-all framework. Table 1 shows that
all our models outperform the BoW baselines and the results of Lan et al. [9] and Shapovalova et
al. [16]. The Region and Region+Context models with two latent regions demonstrate superior
performance compared to Raptis et al. [12]. Our model with 1 latent region performs slightly worse
then model of Raptis et al. [12], however note that [12] used non-linear SVM with χ2 kernel and 4
regions, while we work with linear SVM only. Further, we can clearly see that having 2 latent regions
is beneficial, and improves the classification performance by roughly 4%. The addition of Global
BoW marginally decreases the performance, due to, we believe, over counting of image evidence
and hence overfitting. Context does not improve classification, but does improve localization.

We perform action localization by following the evaluation procedure of [9, 18] and estimate how
well inferred latent regions capture the human6 performing the action. Given a video, for each frame
we compute the overlap score between the latent region and the ground truth bounding box of the
human. The overlap O(bjk, b

j
gt) is defined by the “intersection-over-union” metric between inferred

and ground truth bounding box. The total localization score per video is computed as an average of
the overlap scores of the frames: 1

T

∑T
j=1O(bjk, b

j
gt). Note, since our latent regions may not span

the entire video, instead of dividing by the number of frames T , we divide by the total length of
the inferred latent regions. To be consistent with the literature [9, 18], we calculate the localization
score of each test video given its ground truth action label.

Table 1 illustrates average localization scores7. It is clear that our model with Context achieves
considerably better localization than without (Region) especially with two latent regions. This can
be explained by the fact that in UCF-Sports background tends to be discriminative for classification;
hence without proper context a latent region is likely to drift to the background (which reduces
localization score). Context in our model models the background and leaves the latent regions free

6Note that by definition the task of localizing a human is unnatural for our model since it captures perceptu-
ally salient fixed sized discriminate regions for action classification, not human localization. This unfavorably
biases localization results agains our model; see Fig. 3 for visual comparison between annotated person regions
and our inferred discriminative salient latent regions.

7It is worth mentioning that [18] and [9] have regions detected at different subsets of frames; thus in terms
of localization, these methods are not directly comparable.
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Region Region+Context
K = 1 K = 2 K = 1 K = 2

Ave. 0.58 0.44 0.61 0.58

Region, K = 1 Region+Context, K = 1
Corr. χ2 Corr. χ2

Ave. 0.36 1.64 0.36 1.55

Table 2: Average amount of gaze (left): Table shows fraction of ground truth gaze captured by the
latent region(s) on test videos; context improves the performance. Top-down saliency prediction
(right): χ2 distance and norm. cross-correlation between predicted and ground-truth gaze densities.
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Figure 2: Precision-Recall curves for localization: We compare our model (Region+Context with
K=1 latent region) to the method from [17] and [18].

Figure 3: Localization and gaze prediction: First row: groundtruth gaze and person bounding box,
second row: predicted gaze and extent of the latent region in the frame. See supplemental video.

to select perceptually salient regions of the video. Numerically, our full model (Region+Context)
outperforms the model of Lan et al. [9] (despite [9] having person detections and actor annotations
at training). We cannot compare our average performance to Tran and Yuan [18] since their approach
is evaluated only on 3 action classes out of 10, but we provide their numbers in Table 1 for reference.
We build Precision-Recall (PR) curves for our model (Region+Context) and results reported in [18]
to better evaluate our method with respect to [18] (see Fig. 2). We refer to [18] for experimental setup
and evaluate the PR curves at σ = 0.2. For the 3 classes in [18] our model performs considerably
better for “diving” action, similarly for “horse-riding”, and marginally worse for the “running”.

Gaze localization and prediction: Since our model is driven by eye-gaze, we also measure how
much gaze our latent regions can actually capture on the test set and whether we can predict eye-
gaze saliency maps for the inferred latent regions. Evaluation of the gaze localization is performed
in a similar fashion to the evaluation of action localization described earlier. We estimate amount
of gaze that falls into each bounding box of the latent region, and then average the gaze amount
over the length of all the latent regions of the video. Thus, each video has a gaze localization score
sg ∈ [0, 1]. Table 2 (left) summarizes average gaze localization for different variants of our model.
Noteworthy, we are able to capture around 60% of gaze by latent regions when modeling context.
We estimate gaze saliency, as described in Sect. 4. Qualitative results of the gaze prediction are
illustrated in Fig. 3. For quantitative comparison we compute normalized cross-correlation and χ2

distance between predicted and ground truth gaze, see Table 2 (right). We can observe that the full
model (Region+Context) is more consistent with gaze prediction and has smaller χ2 distance.

6 Conclusion
We propose a novel weakly-supervised structured learning approach for recognition and spatio-
temporal localization of actions in video. Special case of our model with two temporally ordered
paths and context can be solved in linear time complexity. In addition, our approach does not require
actor annotations for training. Instead we rely on gaze data for weak supervision, by incorporating it
into our structured loss. Further, we show how our model can be used to predict top-down saliency
in the form of gaze density maps. In the future, we plan to explore the benefits of searching over
region scale and focus on more complex spatio-temporal relationships between latent regions.
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