
A Versatile Quaternion-based Constrained Rigid Body Dynamics
GUIREC MALOISEL∗, Disney Research, Switzerland
RUBEN GRANDIA, Disney Research, Switzerland
CHRISTIAN SCHUMACHER, Disney Research, Switzerland
ESPEN KNOOP, Disney Research, Switzerland
MORITZ BÄCHER∗, Disney Research, Switzerland

Fig. 1. Our constrained rigid body dynamics can simulate complex kinematic structures, as illustrated here with (from left to right) an Iron Man Audio-
Animatronics® figure, a Hoberman sphere, a Gazelle Audio-Animatronics® figure, and the solar panel deployment mechanism of a satellite. Our formulation
guarantees constraint satisfaction and handles systems with kinematic loops, redundant constraints, overactuation, and passive degrees of freedom.

We present a constrained Rigid Body Dynamics (RBD) that guarantees sat-
isfaction of kinematic constraints, enabling direct simulation of complex
mechanical systemswith arbitrary kinematic structures. To ensure constraint
satisfaction, we use an implicit integration scheme. For this purpose, we
derive compatible dynamic equations expressed through the quaternion time
derivative, adopting an additive approach to quaternion updates instead of
a multiplicative one, while enforcing quaternion unit-length as a constraint.
We support all joints between rigid bodies that restrict subsets of the three
translational or three rotational degrees of freedom, including position- and
force-based actuation. Their constraints are formulated such that Lagrange
multipliers are interpretable as joint forces and torques. We discuss a unified
solution strategy for systems with redundant constraints, overactuation,
and passive degrees of freedom, by eliminating redundant constraints and
navigating the subspaces spanned by multipliers. As our method uses a stan-
dard additive update, we can interface with unconditionally-stable implicit
integrators. Moreover, the simulation can readily be made differentiable as
we show with examples.

∗Both authors contributed equally to this research.

Authors’ Contact Information: Guirec Maloisel, guirec.maloisel@disney.com, Disney
Research, Switzerland; Ruben Grandia, ruben.grandia@disney.com, Disney Research,
Switzerland; Christian Schumacher, christian.schumacher@disney.com, Disney Re-
search, Switzerland; Espen Knoop, espen.knoop@disney.com, Disney Research, Switzer-
land; Moritz Bächer, moritz.baecher@disney.com, Disney Research, Switzerland.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM 1557-7368/2025/8-ART
https://doi.org/10.1145/3730872

CCS Concepts: • Computing methodologies→ Physical simulation.

Additional Key Words and Phrases: rigid body dynamics, kinematic con-
straints, differentiable simulation

ACM Reference Format:
GuirecMaloisel, RubenGrandia, Christian Schumacher, EspenKnoop, andMoritz
Bächer. 2025. A Versatile Quaternion-based Constrained Rigid Body Dynam-
ics. ACM Trans. Graph. 44, 4 (August 2025), 17 pages. https://doi.org/10.1145/
3730872

1 Introduction
Rigid bodies are omnipresent in virtual environments as well as in
mechanical systems in the real world. We are interested in simulat-
ing the dynamics of systems with arbitrary kinematic structures,
including loops and passive degrees of freedom, which requires a
constraint-based formulation. For the accurate simulation of such
systems, it is imperative that constraints remain preserved — in par-
ticular in the vicinity of singularities where even small constraint
violations can cause entirely wrong simulations.

Commonly used explicit and semi-explicit time-stepping schemes
do, in general, not offer guarantees on constraint satisfaction for
arbitrary systems and steps sizes. In contrast, implicit integration
schemes allow the inclusion of kinematic constraints at the next
time step and hence solving for them up to a specified tolerance.
For implicit schemes, rotational motion presents a challenge.

Quaternions are a common representation choice, being compact
and singularity-free, however their use within such an implicit
scheme requires care when handling the unit-length constraint.
While this can be handled using implicit Lie-group integrators, their
specialized multiplicative algebra complicates the use of these for-
mulations in downstream applications.

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

HTTPS://ORCID.ORG/0000-0003-3554-422X
HTTPS://ORCID.ORG/0000-0002-8971-6843
HTTPS://ORCID.ORG/0000-0003-3056-554X
HTTPS://ORCID.ORG/0000-0002-7440-5655
HTTPS://ORCID.ORG/0000-0002-1952-1266
https://orcid.org/0000-0003-3554-422X
https://orcid.org/0000-0002-8971-6843
https://orcid.org/0000-0003-3056-554X
https://orcid.org/0000-0002-7440-5655
https://orcid.org/0000-0002-1952-1266
https://doi.org/10.1145/3730872
https://doi.org/10.1145/3730872
https://doi.org/10.1145/3730872

2 • Guirec Maloisel, Ruben Grandia, Christian Schumacher, Espen Knoop, and Moritz Bächer

Our proposed rigid body dynamics instead writes the dynamical
equations in terms of the quaternion time derivative, formulating
an additive rather than multiplicative quaternion update, and incor-
porates the quaternion unit length as a constraint. This enables in-
terfacing with implicit integration schemes for differential-algebraic
equations (DAEs) and makes the simulation readily differentiable.
We handle systems with position- or force-based actuation and

configurations with redundant kinematic constraints and overactu-
ation, which frequently arise in real-world systems (see Fig. 1). In
the proposed method, we explicitly handle the non-uniqueness of
constraint forces in such redundant and overactuated configurations
and provide the user with control over the desired solution.

We begin by deriving the proposed equations of motion for a sin-
gle rigid body directly from the Euler-Lagrange equations (Sec. 3).
We then express atomic translational and rotational constraints,
providing a unified way of formulating passive, position- and force-
actuated joints as an extension of the dot-product formulation for
kinematic constraints (Sec. 4). Next, we discuss the implicit integra-
tion of the resulting constrained rigid body dynamics (Secs. 5 and 6),
and the differentiability of our simulator (Sec. 7). We evaluate our
method on a rich set of examples, including targeted studies of differ-
ent integration schemes, and compare with a common semi-implicit
approach (Sec. 8).
Succinctly, we contribute
• a quaternion-based RBD that enforces unit-length constraints
without the need for Lagrange multipliers.
• a unified treatment of passive, position- or force-actuated
joints, facilitating analysis of constraint forces and torques
by making corresponding Lagrange multipliers directly inter-
pretable.
• a solution strategy that combines implicit time integration
and a Newton-type solver to handle fully-, over-, or under-
actuated systems as well as redundancy in the kinematic
constraints and the corresponding force subspaces.
• a demonstration of the differentiability of the simulator, facil-
itated by the additive orientation update.

2 Related Work
We first discuss related work on the integration of the equations of
motion of a single, unconstrained body, followed by a discussion of
incorporating constraints.

Rigid Body Dynamics. Motion equations for a single body differ in
how they represent its orientation and angular velocity. Unit quater-
nions are free of singularities, but only represent rotations if they are
kept unit length. Renormalization [Witkin and Baraff 1997] intro-
duces inaccuracies due to the ad-hoc projection operation. The use
of non-unit-length quaternions [Rucker 2018] has been shown for
single bodies, but has not been extended to incorporate constraints.
Variational integrators inherently maintain unit length by using
an exponential map [Grassia 1998; Kobilarov et al. 2009; Simo and
Wong 1991; Wieloch and Arnold 2021], however their multiplicative
update hinders downstream use (e.g., differentiability).
Similar to previous work [Betsch and Siebert 2009; Möller and

Glocker 2012; Nielsen and Krenk 2012; Nikravesh et al. 1985b; Ud-
wadia and Schutte 2010; Xu et al. 2020], we derive quaternion-based

motion equations from the Lagrangian or Hamiltonian, rely on a
unit-length constraint, and use the time derivative of the quater-
nion to represent the angular velocity. However, our formulation
avoids the introduction of a 4D augmented inertia matrix that does
not have a physical meaning [Betsch and Siebert 2009; Xu et al.
2020] and enforces the unit-length constraint without the need for
a Lagrange multiplier, resulting in 3 instead of 4 angular motion
equations and as many equations as unknowns.

Kinematic Constraints. The incorporation of kinematic constraints,
a.k.a. geometric or bilateral constraints, into RBDs has received at-
tention for decades [Bender et al. 2014]. Our constraint formulation
is similar to previous work [Bächer et al. 2015; Barzel and Barr 1988;
Coros et al. 2013; Haug 1989; Maloisel et al. 2021, 2023; Schumacher
et al. 2021; Thomaszewski et al. 2014]. However, we make sure that
the corresponding Lagrange multipliers can be interpreted as either
forces or torques in joint coordinates, avoiding an unintuitive scal-
ing due to the use of the imaginary part of the quaternion [Tasora
and Righettini 1999]. This in turn enables the formulation of more
general force-based actuators that are consistent with previously
introduced position-based actuators [Maloisel et al. 2023]. Further-
more, we propose an explicit treatment of the extraneous kinematic
solutions in rotational constraints (“joint flips”) that can emerge for
large simulation steps.

Constrained Multibody Dynamics. Rigid body systems with many
loop-closure constraints are stiff systems and hence challenging
to stably integrate. Methods for articulated [Geilinger et al. 2020]
or hybrid systems with only a few kinematic loops [Tomcin et al.
2014; Wang et al. 2019] are therefore more common, where minimal
coordinate formulations are frequently used. Another body of work
focuses on the resolution of unilateral constraints or frictional con-
tact [Erleben 2017; Ferguson et al. 2021; Kaufman et al. 2005, 2008;
Smith et al. 2012], or relaxes the problem by assuming some [Hosh-
yari et al. 2019] or all bodies [Li et al. 2020; Tournier et al. 2015] to
be flexible or at least close-to-rigid [Lan et al. 2022]. This flexibility
not only reduces the stiffness in the system, but also regularizes
subspaces in constraint forces and torques.
Simulation software in graphics and robotics (PhysX, ODE, Mu-

joco) [Erez et al. 2015], support both bilateral and unilateral con-
straints and primarily use semi-implicit integration, where velocities
are implicitly solved and positions are explicitly integrated there-
after. This relies on stabilized velocity constraints [Ascher et al.
1995; Baumgarte 1972], which require tuning stabilization parame-
ters and cannot guarantee position constraint satisfaction. Instead,
we implicitly integrate the resulting DAEs and directly solve for
position constraints.

3 AQuaternion-based Rigid Body Dynamics
Wederive our constrained dynamics directly from the Euler-Lagrange
equations

d
d𝑡

(
𝜕𝑇

𝜕¤s

)𝑇
−
(
𝜕𝑇

𝜕s

)𝑇
= C𝑇s 𝝀 + fgen (1)

with the goal to solve for the time-varying pose of the rigid bodies,
s, corresponding velocities, ¤s, and Lagrange multipliers, 𝝀, so that a
mechanical system is in dynamic equilibrium at all times 𝑡 . Because

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

A Versatile Quaternion-based Constrained Rigid Body Dynamics • 3

we assume non-conservative and conservative forces to be part
of the generalized force term, fgen, we set the Lagrangian to the
kinetic energy 𝑇 , omitting a potential energy term for conservative
forces. To enforce a set of equality constraints, C = 0, we choose
multipliers 𝝀 so that the generalized forces, C𝑇s 𝝀, do not do any
work on the system, where Cs is the Jacobian of the constraints or
their derivatives with respect to the pose.

For the remainder of this section, we will focus on a single rigid
body, deferring a discussion of the constrained motion of several
rigid bodies to the next section.
We represent the state of a rigid body with the position of its

center of mass, c, in global coordinates and its orientation with a
unit quaternion q

s =
[
c
q

]
, together with corresponding velocities ¤s =

[
v
w

]
. (2)

While it is common practice to represent the linear velocity of rigid
bodies with v = ¤c, it is far less common to use the time derivative
of the quaternion, w = ¤q, instead of the angular velocity 𝝎, for
angular motion. Instead of working with a 13-dimensional set of
state variables (c, q, v, 𝝎), we work with a 14-dimensional set (c, q,
v, w) and enforce the unit-length constraint,𝐶 = q𝑇 q − 1, explicitly.

To derive the equations of motion of the body, we define its kinetic
energy 𝑇 = 𝑇lin +𝑇ang that is due to its linear and angular motion

𝑇lin (¤c) =
1
2
¤c𝑇𝑀 ¤c 𝑇ang (q,𝝎) =

1
2
𝝎𝑇R(q)JrbR(q)𝑇𝝎, (3)

where Jrb is the constant moment of inertia, rotated to global coordi-
nates using the rotation matrix R(q). Matrix R(q) can be expressed
with two matrices,G(q) andH(q), whose entries linearly depend on
the coordinates of the unit quaternion (see Tab. 1, entries and row
6). These matrices have a set of remarkable properties as previously
discovered (see, e.g., [Nikravesh et al. 1985a,b]) and summarized in
Tab. 1.

For the linear motion of a body, the Euler-Lagrange equations
result in Newton’s second law

d
d𝑡

(
𝜕𝑇lin
𝜕¤c

)𝑇
−
(
𝜕𝑇lin
𝜕c

)𝑇
= 𝑀 ¥c = 𝑀 ¤v = f . (4)

with external forces f ∈ R3 that act on the body’s center of mass.
The Euler-Lagrange equations for the angular motion of the body,

d
d𝑡

(
𝜕𝑇ang

𝜕 ¤q

)𝑇
−
(
𝜕𝑇ang

𝜕q

)𝑇
= 𝐶𝑇q 𝜆 + 2G(q)𝑇𝝉 , (5)

have a less trivial right-hand side, because the derivative of the
unit-length constraint is non-zero and the external torque around
the center of mass, 𝝉 , needs to be transformed to the 4D space by
applying the transformation 2G(q)𝑇 . The particular form of this
transformation can be traced back to the relationship between the
angular velocity and the time derivative of the quaternion (property
10 in Tab. 1).

Before taking derivatives, it is convenient to use the properties
in Tab. 1 to derive two variants of the kinetic energy

𝑇ang (q, ¤q)
6,10,3
= 2¤q𝑇H(q)𝑇 JrbH(q) ¤q

2
= 2q𝑇H(¤q)𝑇 JrbH(¤q)q (6)

that only depend on the quaternion and its time derivative. The
numbers above the equality signs indicate which properties we

Table 1. Properties of Matrices G(q) , H(q) , and R(q) . We number the
properties (left column) and indicate if we use them in derivations by adding
the property number(s) above the equal sign. We first summarize the entries
and properties (1-5) of the individual matricesG(q) andH(q) (top), then list
properties that use a combination of them to express the rotation matrix (6),
its time derivative (7,8), and relate the angular velocity to the time derivative
of the quaternion and vice versa (9, 10). The properties can be verified by
substituting q = [𝑞𝑥 𝑞𝑦 𝑞𝑧 𝑞𝑤]𝑇 , with the real part 𝑞𝑤 , and by using the
unit-length property, q𝑇 q = 1. I3 and I4 are 3D and 4D identity matrices
and [a]× is the skew-symmetric matrix form of the cross product of a with
another vector.

G(q) H(q)

En
tr
ie
s [

𝑞𝑤 −𝑞𝑧 𝑞𝑦 −𝑞𝑥
𝑞𝑧 𝑞𝑤 −𝑞𝑥 −𝑞𝑦
−𝑞𝑦 𝑞𝑥 𝑞𝑤 −𝑞𝑧

] [
𝑞𝑤 𝑞𝑧 −𝑞𝑦 −𝑞𝑥
−𝑞𝑧 𝑞𝑤 𝑞𝑥 −𝑞𝑦
𝑞𝑦 −𝑞𝑥 𝑞𝑤 −𝑞𝑧

]
1 G(q)q = 0 H(q)q = 0

2 for v ∈ R4 : G(q)v = −G(v)q for v ∈ R4 : H(q)v = −H(v)q

3 G(q)G(q)𝑇 = I3 H(q)H(q)𝑇 = I3

4 G(q)𝑇G(q) = −qq𝑇 + I4 H(q)𝑇H(q) = −qq𝑇 + I4
5 G(¤q) ¤q = 0 H(¤q) ¤q = 0

6 R(q) = G(q)H(q)𝑇

En
tr
ie
s

𝑞2
𝑤 + 𝑞2

𝑥 − 𝑞2
𝑦 − 𝑞2

𝑧 2𝑞𝑥𝑞𝑦 − 2𝑞𝑤𝑞𝑧 2𝑞𝑤𝑞𝑦 + 2𝑞𝑥𝑞𝑧
2𝑞𝑤𝑞𝑧 + 2𝑞𝑥𝑞𝑦 𝑞2

𝑤 − 𝑞2
𝑥 + 𝑞2

𝑦 − 𝑞2
𝑧 2𝑞𝑦𝑞𝑧 − 2𝑞𝑤𝑞𝑥

2𝑞𝑥𝑞𝑧 − 2𝑞𝑤𝑞𝑦 2𝑞𝑤𝑞𝑥 + 2𝑞𝑦𝑞𝑧 𝑞2
𝑤 − 𝑞2

𝑥 − 𝑞2
𝑦 + 𝑞2

𝑧

7 G(q)H(¤q)𝑇 = G(¤q)H(q)𝑇

8 ¤R 7
= 2G(q)H(¤q)𝑇 7

= 2G(¤q)H(q)𝑇

9 [𝝎]× = ¤RR𝑇 6,8
= 2G(¤q)H(q)𝑇H(q)G(q)𝑇 4,1

= 2G(¤q)G(q)𝑇

10 𝝎
9
= 2G(q) ¤q ⇔ ¤q 3

= 1
2G(q)

𝑇𝝎

used and in which order we applied them. The first variant makes
it straightforward to take the derivatives of 𝑇ang with respect to ¤q
and time 𝑡

4H(q)𝑇 JrbH(q) ¥q +(((((((
4H(q)𝑇 JrbH(¤q) ¤q + 4H(¤q)𝑇 JrbH(q) ¤q (7)

where the second term is zero due to property 5. The second variant
makes it trivial to take the derivative with respect to q

4H(¤q)𝑇 JrbH(¤q)q
2
= −4H(¤q)𝑇 JrbH(q) ¤q. (8)

The 4D Euler-Lagrange equations for angular motion are there-
fore

4H(q)𝑇 JrbH(q) ¥q + 8H(¤q)𝑇 JrbH(q) ¤q = 2q𝜆 + 2G(q)𝑇𝝉 . (9)

In contrast to related work [Betsch and Siebert 2009; Nielsen and
Krenk 2012; Xu et al. 2020], we project the equations to the 3D space
by multiplying either side with 1

2G(q), applying properties 1 and 3
to simplifly the right-hand side

2G(q)H(q)𝑇 JrbH(q) ¥q + 4G(q)H(¤q)𝑇 JrbH(q) ¤q = 𝝉 . (10)

Note how the generalized force due to the unit-length constraint
cancels. The Lagrange multiplier can therefore be ignored, resulting

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

4 • Guirec Maloisel, Ruben Grandia, Christian Schumacher, Espen Knoop, and Moritz Bächer

in the first-order system with 14 equations

F1
F2

F3
F4

F5

=

¤c − v
¤q − w

𝑀 ¤v − f
2R(q)JrbH(q) ¤w + 4G(q)H(w)𝑇 JrbH(q)w − 𝝉

q𝑇 q − 1

= 0

in 14 unknown state variables c, q, v, and w that is in equilibrium if
equations F1−F5 evaluate to zero. Because the last equation does not
depend on the time derivative of a state variable, the system consists
of a set of DAEs and not only ordinary differential equations (ODEs).
We will discuss numerical solution strategies after incorporating
kinematic constraints into our RBD.

4 Incorporating Constraints
Our kinematic constraints for mechanical joints and position-based
actuators are similar to relatedwork that focuses on kinematics [Mal-
oisel et al. 2023; Schumacher et al. 2021]. However, because we use
them in the context of a dynamics simulation, we make adjust-
ments so that Lagrange multipliers consistently represent forces
and torques in joint coordinates of one of the two bodies. Moreover,
we show that we can turn every position-based actuator [Maloisel
et al. 2023] into a corresponding force-based actuator by replac-
ing Lagrange multipliers with parameters in constraint forces and
torques.

Constraints. To restrict the motion between a follower body 𝐹

and a base body 𝐵, we add a constraint

𝐶 (c𝐹 , q𝐹 , c𝐵, q𝐵) = 0 (11)

for every translation or rotation along or about an axis without
mobility to the equations of motion F of the individual bodies. At
the same time, we add a Lagrange multiplier 𝜆 to the unknown
state y, keeping the number of equations and unknowns equal by
construction as illustrated here for a two-body system

F(¤y, y, 𝑡) =

F1𝐹

F2𝐹

F3𝐹 − f𝐹

F4𝐹 − 𝝉𝐹

F5𝐹

F1𝐵

F2𝐵

F3𝐵 − f𝐵

F4𝐵 − 𝝉𝐵

F5𝐵

𝐶

= 0 y =

c𝐹

q𝐹

v𝐹

w𝐹

c𝐵

q𝐵

v𝐵

w𝐵

𝜆

. (12)

In addition and to ensure that forces and torques are properly
transferred between the two bodies, we subtract the constraint
forces

f𝐹 = 𝐶𝑇c𝐹 𝜆 f𝐵 = 𝐶𝑇c𝐵𝜆 (13)

Table 2. Properties of Constraint Derivatives. The property pairs (1, 4)
and (2, 3) are equivalent. Properties 1 and 2 are useful in the derivation of
constraint torques for translational constraints, and properties 3 and 4 for
derivation of torques for rotational constraints. Note that a × b = −(b × a)
and (a × b)𝜆 = (a𝜆) × b = a × (b𝜆) .

𝐶 (q) 1
2G(q)𝐶

𝑇
q 𝜆

1 a · (R(q)b) (R(q)b) × (a𝜆)

2 a · (R(q)𝑇 b) b × (−R(q)a𝜆)
3 (R(q)a) · b (R(q)a × b) 𝜆
4 a · (R(q)b) − (a × R(q)b) 𝜆

from the equations F3 and constraint torques

𝝉𝐹 =
1
2
G(q𝐹)𝐶𝑇q𝐹 𝜆 𝝉𝐵 =

1
2
G(q𝐵)𝐶𝑇q𝐵𝜆 (14)

from equations F4 of the two bodies.
In the remainder of this section, we will introduce a single transla-

tional and a single rotational constraint that enable the formulation
of all joint and actuator types with up to three translational and
three rotational degrees of freedom. To derive analytical and inter-
pretable expressions for the constraint forces and torques, we make
use of the properties in Tab. 2. For the sake of illustration, we use a
prismatic and a revolute joint (Figs. 2 and 3).
To formulate constraints, we assume the initial location of a

joint, x, as well as its axes, A = [a𝑥 , a𝑦, a𝑧], to be defined in global
coordinates (Figs. 2 and 3, Initialization). By setting the orientations
of all bodies to the identity at time 𝑡 = 0, the joint axes in local body
coordinates equal the global axes, A𝐹

rb = A𝐵
rb = A, and the joint

locations in body coordinates are x𝐹rb = x − c𝐹 and x𝐵rb = x − c𝐵 .

Translational Constraints. A prismatic joint with a translational
degree of freedom along axis a𝑥 restricts translations in the two
orthogonal directions a𝑦 and a𝑧 , while a revolute joint restricts
translations along all three axes. A single constraint that enables
the formulation of all joint types relies on the difference vector, d,
between the two global joint locations, transformed to coordinates

Initialization, 𝑡 = 0 Joint, 𝑡 > 0

x

cB

cF

ax
ay

az

B

F

λy

λz

Position-based Actuator, 𝑡 > 0 Force-based Actuator, 𝑡 > 0

λx

px

px

Fig. 2. Prismatic Joint and Actuators.

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

A Versatile Quaternion-based Constrained Rigid Body Dynamics • 5

Initialization, 𝑡 = 0 Joint, 𝑡 > 0

xcB
cF

ax

ay azB

F

λy
λz

Position-based Actuator, 𝑡 > 0 Force-based Actuator, 𝑡 > 0

λx

px

px

Fig. 3. Revolute Joint and Actuators.

of the base body, and restricts motion along the generic axis a

𝐶 = a · (R(q𝐵)𝑇 d) (15)

d = R(q𝐹)x𝐹rb + c
𝐹 − (R(q𝐵)x𝐵rb + c

𝐵) . (16)
If a translation is restricted along an axis, we expect forces to be

transferred along this axis. Moreover, we expect constraint forces to
be equal and opposite, not doing any work on the system. Deriva-
tions of analytical expressions for the two constraint forces confirm
that this is the case

f𝐹 = R(q𝐵)a𝜆 f𝐵 = −f𝐹 . (17)

In addition, we observe that the Lagrange multiplier can be inter-
preted as force along a in joint coordinates on body 𝐵, explaining
why we transform the difference vector to local coordinates of 𝐵.

Because the two forces act at the joint location on the follower,
they induce two torques that are not equal and opposite due to the
difference in the two moment arms

𝝉𝐹
1
= (R(q𝐹)x𝐹rb) × f

𝐹 𝝉𝐵
2
= (R(q𝐹)x𝐹rb + c

𝐹 − c𝐵) × f𝐵 . (18)

In their derivation, we made use of properties 1 and 2 in Tab. 2.
For a prismatic joint with axis a𝑥 , we add two constraints with

a set to a𝑦 and a𝑧 , and for a revolute joint we add a constraint for
every axis.

Rotational Constraints. To restrict rotational motion, it is common
to ask an axis a on the follower to remain orthogonal to another
axis b on the base with a dot-product constraint

𝐶 = (R(q𝐹)a) · (R(q𝐵)b) . (19)

Because the constraint does not depend on the two centers of
mass, only the two constraint torques are non-zero and are, as
expected, equal and opposite

𝝉𝐹
3
= (R(q𝐹)a × R(q𝐵)b)𝜆 𝝉𝐵

4
= −𝝉𝐹 , (20)

where we made use of properties 3 and 4 in Tab. 2. By taking a
closer look at the analytical expression, we observe that the La-
grange multiplier can be interpreted as torque about the axis that
is perpendicular to both R(q𝐹)a and R(q𝐵)b. For consistency with

our translational constraints, we choose the two axes and multiply
the constraint with −1 if necessary so that 𝜆 represents a positive
torque about the axis R(q𝐵) (a × b) on the base body.

For a prismatic joint, we introduce constraints between all three
pairs of axes, while we set the pair (a, b) to (a𝑥 , a𝑧) for a first and to
(a𝑥 , a𝑦) for a second constraint for our revolute joint, multiplying
the first one with −1.

Position-based Actuators. To turn a passive joint into a position-
based actuator, we need to complement the set of passive constraints
with active constraints along or about the “free” axes [Maloisel
et al. 2023], controlling the degree of freedom with a position-based
variable 𝑝 . Once 𝑝 is set, the relative motion between the two bodies
is fully constrained and forces and torques are transferred in all
directions.
To control the position along a generic axis a with 𝑝 , we simply

subtract 𝑝 from our passive translational constraint

𝐶 = a · (R(q𝐵)𝑇 d) − 𝑝. (21)

Due to the linear dependence on 𝑝 , the constraint forces and torques
are the same for an active and a passive version of this constraint.
With an active rotational constraint, we aim at controlling the

rotation about the axis a × b by angle 𝑝 . To do so, we can either
rotate a on the follower

𝐶 = (R(q𝐹)R[𝑝, a × b]𝑇 a) · (R(q𝐵)b) (22)

or b on the base body

𝐶 = (R(q𝐹)a) · (R(q𝐵)R[𝑝, a × b]b). (23)

Because we want 𝑝 to represent a positive rotation about a × b
on the base body, we transpose the rotation R[𝑝, a × b] in the first
constraint. The variant we use depends on the joint type. Because a
universal joint is technically a three body joint with a star-shaped
mid-body, we need both variants to turn it into an actuator.
In contrast to active translational constraints, the constraint

torques depend on parameter 𝑝 and can easily be derived with
properties 3 and 4 in Tab. 2.

To turn our prismatic joint into an actuator, we add a translational
constraint with a = a𝑥 and 𝑝 = 𝑝𝑥 . Similarly, we add a rotational
constraint with (a, b) = (a𝑦, a𝑧) and 𝑝 = 𝑝𝑥 for a revolute actuator,
where 𝑝𝑥 represents a rotation about a𝑥 = a𝑦 × a𝑧 .

Force-based Actuators. To turn a passive joint into a force-based
actuator, we add constraint forces and torques with the Lagrange
multiplier replaced with a parameter 𝑝 , instead of adding the cor-
responding constraint. For translations, we simply substitute 𝑝 for
𝜆 in Eqs. 17 and 18. To actively control rotations with a torque 𝑝
about axis a × b, we use the two constraint torques

𝝉𝐹 = R(q𝐵) (a × b)𝑝 𝝉𝐵
4
= −𝝉𝐹 , (24)

For our prismatic example, we add forces and torques with a set
to a𝑥 and 𝑝𝑥 representing the actuation force along a𝑥 . For our
revolute joint, we set the pair (a, b) to (a𝑦, a𝑧), with 𝑝𝑥 representing
an actuation torque about the axis a𝑥 = a𝑦 × a𝑧 .

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

6 • Guirec Maloisel, Ruben Grandia, Christian Schumacher, Espen Knoop, and Moritz Bächer

Table 3. Constraints for Common Joints

Name Translation Constraints Rotation Constraints

Fixed fixed fixed

Prismatic 1 DoF (a𝑥) fixed
Revolute fixed 1 Dof (a𝑥)

Rectangular 2 DoF (a𝑥 , a𝑦) fixed
Cylindrical 1 DoF (a𝑥) 1 DoF (a𝑥)
Pin in Slot 1 DoF (a𝑥) 1 DoF (a𝑦)
Universal fixed 2 DoF(a𝑥 , a𝑦)

Cartesian free fixed
Planar 2 DoF (a𝑥 , a𝑦) 1 DoF (a𝑧)
Spherical fixed free

Slot 1 DoF (a𝑥) free

Free free free

Combining Constraints. By adding a constraint for each restricted
translation or rotation, we canmodel the degrees of freedom ofmany
mechanical joints (see Tab. 3), turning them either into position- or
force-based actuators if needed. We refer the reader to Tab. 7 in our
appendix for implementation-ready formulas for the translational
and rotational constraints that we list in Tab. 3. While we haven’t
explored it, we can use our two basic constraints to partially actuate
a mechanical joint, or to mix position- and force-based actuation
along or about axes.

Unary Constraints. By setting the center of mass of the base body
to zero and its orientation to the identity, we can turn each constraint
into one that constrains a follower body to the world. We use such
constraints for our spinning top example, where we constrain the
tip to stay at the same location with a unary constraint to the world.

Joint Flips. For joints and actuators with more than one orthog-
onality constraint, extraneous solutions with flipped axes exist.
Solvers can converge to a “flipped” solution if large steps are taken.
For instance, for a revolute joint, both solutionsR(q𝐹)a𝑥 = ±R(q𝐵)a𝑥
satisfy the two constraints.
To prevent flips, we formulate what we refer to as consistency

constraints (see const. C columns in Tab. 7), which evaluate to 1
for the correct solution, and 0 or −1 for extraneous solutions. For
example, for a revolute joint with axis a𝑥 , we introduce one con-
sistency constraint by setting a = b = a𝑥 in Eq. 19. When solving
the equations of motion, during line search, we backtrack if any
consistency constraint is below a positive threshold.

5 Implicitly Integrating Constrained Dynamics
Analogously to the two-body case (Eq. 12), we form the continuous
equations of motion for a multibody system, F(¤y, y, 𝑡) = 0, by first
adding the equations of motion for the individual bodies, followed
by adding constraints C. For every constraint, we add a Lagrange
multiplier to y and subtract corresponding constraint forces and
torques from the respective body equations.
F = 0 constitutes a system of DAEs of index 3 and Hessenberg

form [Brenan et al. 1995], which we integrate forward in time with a
fully implicit scheme, so that kinematic constraints can be enforced

up to a numerical tolerance. More specifically, we pick an uncondi-
tionally stable scheme, which is valuable when solving optimization
problems with a simulator in the loop.
Compared to ODEs, the integration of DAEs, even with implicit

schemes, poses additional challenges. Two families of implicit meth-
ods have seen common use, and have proven convergence results [Bre-
nan et al. 1995].

5.1 Backward Differentiation Formula (BDF)
The first and simplest applies the Backward Differentiation Formula
(BDF) with a fixed time step Δ𝑡 . Given a linear combination of
previous states, y𝑝 := 𝛼1y(𝑘−1) + . . . + 𝛼𝑚y(𝑘−𝑚) , the next state
y𝑛 := y(𝑘) at time 𝑡𝑛 := 𝑘Δ𝑡 is computed as the solution of the
system

F
(
y𝑛 − y𝑝
𝛽Δ𝑡

, y𝑛, 𝑡𝑛

)
= 0, (25)

which is solved with an iterative Newton-type solver, as detailed
in Sec. 6. Coefficients 𝛼1, . . . , 𝛼𝑚, 𝛽 are tabulated for a BDF of a
particular order𝑚.
One advantage of discretizing with a BDF formula is that the

cost of solving Eq. 25 is largely independent of the order𝑚, as it
only affects the precomputation of y𝑝 . Note, however, that formu-
las of order 3 or higher are not unconditionally stable. The usage
of a fixed time step Δ𝑡 is a requirement for convergence [Brenan
et al. 1995], preventing the use of adaptive time-stepping schemes,
or requiring additional correction [Arévalo and Lötstedt 1995]. In
our experiments, we therefore use BDF1 (𝛽 = 1, 𝛼1 = 1) and BDF2
(𝛽 = 2

3 , 𝛼1 = 4
3 , 𝛼2 = − 1

3) and find the latter a good trade-off between
computational cost, accuracy, and stability. The fixed time step also
facilitates downstream processing of the simulation results, includ-
ing differentiating through a simulation sequence for sensitivity
analysis or optimization.

5.2 Implicit Runge-Kutta Methods
If a higher-order method or adaptive time-stepping are desired, an
implicit 𝑠-stage Runge-Kutta method [Brenan et al. 1995] can be
applied, solving{

y(𝑘) = y(𝑘−1) + Δ𝑡 ∑𝑠
𝑖=1 𝑏𝑖k𝑖

F
(
k𝑖 , y(𝑘−1) + Δ𝑡 ∑𝑠

𝑗=1 𝑎𝑖 𝑗k𝑗 , 𝑡𝑘−1 + 𝑐𝑖Δ𝑡
)
= 0, 𝑖 = 1 . . . 𝑠

(26)

for k1, . . . , k𝑠 and y(𝑘) at 𝑡𝑘 = 𝑡𝑘−1 + Δ𝑡 , given the previous state
y(𝑘−1) at 𝑡𝑘−1. Coefficients 𝑎𝑖 𝑗 , 𝑏𝑖 , and 𝑐𝑖 are scheme-specific.

Assuming a diagonally implicit Runge-Kutta (DIRK) method, that
is, 𝑎𝑖 𝑗 = 0 for 𝑖 < 𝑗 , intermediate solutions k𝑖 can be computed
sequentially, applying our algebraic solver 𝑠 times to solve

F
©«
y𝑖 −

(
y(𝑘−1) + Δ𝑡 ∑𝑖−1

𝑗=1 𝑎𝑖 𝑗k𝑗
)

𝑎𝑖𝑖Δ𝑡
, y𝑖 , 𝑡𝑘−1 + 𝑐𝑖Δ𝑡𝑖

ª®®¬ = 0 (27)

for the intermediate state y𝑖 , from which we then recover k𝑖 as

ki =
y𝑖 −

(
y(𝑘−1) + Δ𝑡 ∑𝑖−1

𝑗=1 𝑎𝑖 𝑗k𝑗
)

𝑎𝑖𝑖Δ𝑡
. (28)

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

A Versatile Quaternion-based Constrained Rigid Body Dynamics • 7

Note that the discretized equations Eq. 27 and Eq. 25 are the same
if we set the unknown state y𝑛 in Eq. 27 to y𝑖 and the aggregate
previous state y𝑝 to y(𝑘−1) + Δ𝑡 ∑𝑖−1

𝑗=1 𝑎𝑖 𝑗k𝑗 . We can therefore use
the same solution strategy to solve them.

DIRK methods do not generally fulfill algebraic constraints at the
new state y(𝑘) , unless the method is stiffly-accurate, which requires
that 𝑐𝑠 = 1 and 𝑎𝑠𝑖 = 𝑏𝑖 for 𝑖 = 1, . . . , 𝑠 .
For systems where energy conservation is of secondary impor-

tance, using BDF2 integration with a smaller time step is often
preferable over a DIRK method, as the higher order of convergence
does not offset the additional computational cost. In addition, it
has been observed that implicit Runge-Kutta methods can yield a
strictly lower order of convergence when used for DAE integration
as opposed to ODE integration. In our results, the use of Runge-
Kutta methods is therefore limited to validations, and to improve the
start-up of BDF2 by integrating the first step using a stiffly-accurate
two-stage SDIRK method [Nishikawa 2019] (see Appendix A for
scheme coefficients).

6 Solving the Algebraic Equations
To step our simulator in time, we solve the discretized equations
iteratively up to a numerical tolerance. Our solver largely follows
a Newton scheme, refining a solution in steps by evaluating the
equations F and their Jacobian Fy𝑛 at the current iterate y𝑛 , and
computing an update Δy𝑛 by solving

Fy𝑛 Δy𝑛 = −F. (29)

For robustness, we perform a line search to select the next iterate
along the direction Δy𝑛 , ensuring sufficient progress and preventing
violations in consistency constraints (see Sec. 4, Tab. 7).

Note that there are always as many equations as unknowns by
construction: For every rigid body, we add 14 equations in 14 un-
knowns, and for every constraint, we add as many constraint equa-
tions as unknown Lagrange multipliers. For most systems, however,
the Jacobian is poorly conditioned or rank-deficient. The latter oc-
curs whenever kinematic constraints are redundant.
In the remainder of this section, we present our adaptations to

this general iterative procedure, so that the discretized equations
can be solved accurately for all classes of systems, including under-,
fully- and overactuated systems, and/or systems with redundant
kinematic constraints.

We use s𝑛, ¤s𝑛,𝝀𝑛 to denote the segments of y𝑛 corresponding to
the collection of rigid body poses, velocities, and Lagrange multipli-
ers, respectively.

6.1 System Conditioning for Small Time Steps
Even in the case of a full-rank Jacobian, the condition number of
Fy𝑛 grows quickly, with 𝑂 (1/Δ𝑡4), when the time step is decreased.
This can be remedied by scaling the rows and columns of the Jaco-
bian [Bottasso et al. 2008]. We therefore define scaled versions of
the variables, y′𝑛 := Dyy𝑛 , and of the equations, F′ := DFF, where
Dy,DF are diagonal matrices. The equivalent Newton step in the
scaled variables is then

DF Fy𝑛D
−1
y Δy′𝑛 = −F′ . (30)

By an appropriate choice of the scaling, the dominant terms in the
condition number of the scaled Jacobian DF Fy𝑛D

−1
y can be made

independent of Δ𝑡 . We set entries of Dy,DF to
• 1 if they correspond to position or orientation variables, or
to unit-length or kinematic constraint equations.
• Δ𝑡 if they correspond to linear and angular velocity variables,
or to velocity equations.
• Δ𝑡2 if they correspond to Lagrange multipliers, or to equilib-
rium equations (since forces scale like accelerations).

The next iterate in the original variables is then recovered after the
Newton step by applying the inverse scaling. In all of the following,
we work with scaled variables, equations and Jacobians, but drop
the additional notation for simplicity.

6.2 Overconstrained Systems
Systems with kinematic loops commonly display redundancy in
their constraints — for example a regular planar four-bar linkage
with all-revolute joints will have 3 constraints too many.

Redundant constraints manifest as redundant Lagrange multi-
pliers, resulting in a subspace of solutions in terms of generalized
forces transmitted at joints or actuators. Picture a door pivoting
about two hinges on the same axis: The weight of the door could be
carried equally by both hinges, or a single hinge, or any intermediate
distribution.

Redundant Constraints Elimination. When redundant kinematic
constraints are present, the Jacobian, Fy𝑛 , becomes rank-deficient.
The system Eq. 29 becomes both overconstrained (due to redundant
constraints) and underconstrained (due to the subspace in the La-
grange multipliers), and can therefore not be directly solved for a
least-squares (via Fy𝑛𝑇 Fy𝑛) or least-norm (via Fy𝑛Fy𝑛𝑇) solution. An
expensive rank-revealing solver, e.g. QR or singular value decompo-
sition, would be required instead.
To circumvent this, we utilize the technique introduced in [Mal-

oisel et al. 2023] to pick a subset of kinematic constraints that can
be eliminated while preserving the kinematics of the system. The
key steps are reproduced in Appendix B for completeness. By also
eliminating the corresponding multipliers, we obtain a reduced,
full-rank system, which permits a more efficient solver — here we
use a sparse LU decomposition. A more expensive singular value
decomposition is required only for the redundancy analysis as a
precomputation.
For some systems, the set of removable constraints may vary

over time, in particular close to a singularity. We remedy this by
checking, at the end of each simulation step of the reduced system,
that the eliminated constraints are still satisfied within a tolerance. If
they are not, a new redundancy analysis is performed at the current
state. In practice, this occurs rarely and does not significantly affect
performance. For increased robustness, the number of constraints
to eliminate is stored after the first analysis, as numerical rank
computations may be unreliable near singular configurations.

Overactuated Systems. Overactuated systems contain more actu-
ators than the degrees of freedom of the equivalent system with
all passive joints. This can be used, for example, to distribute a
load across multiple actuators. As a consequence, when performing

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

8 • Guirec Maloisel, Ruben Grandia, Christian Schumacher, Espen Knoop, and Moritz Bächer

position control, actuators cannot be stepped individually without
violating the constraints — rather, they must move in concert. To
handle this case, we follow [Maloisel et al. 2023], essentially treating
redundant actuators similarly to redundant constraints.
In the case of redundant force-based actuators, no special treat-

ment is required: the force inputs for these actuators only appear on
the right-hand side of the system of Eq. 29, and thus do not affect
its rank. When analyzing kinematic constraints, these actuators are
treated like their corresponding passive joints.

Weighted Least-Norm Multipliers. As discussed, overconstrained
systems exhibit a redundancy in their Lagrange multipliers. Using a
reduced system removes the redundancy by allowing only a subset
of multipliers to be non-zero, but results in an arbitrary solution,
with discontinuities if the set of reduced constraints needs to be
updated. We note that only the equilibrium equations E, correspond-
ing to rigid body equations F3 − F4 with added constraint forces,
depend, linearly, on multipliers 𝝀𝑛 ; thus the more general solution
subspace is characterized by

E𝝀𝑛
𝝀𝑛 = −E (31)

where E, E𝝀𝑛
are evaluated for 𝝀𝑛 = 0 and s𝑛, ¤s𝑛 set as per the

solution for the reduced system. To select a more meaningful and
time-consistent solution within this subspace, we allow the user to
specify a fixed weight𝑤𝑖 > 0 for each force or torque component
𝜆𝑖 . As a post-processing step, we then solve for 𝝀𝑛 by minimizing
the weighted norm 1

2
∑
𝑖 𝑤𝑖𝜆

2
𝑖
, which admits a closed form

𝝀𝑛 = −W−1E𝝀𝑛

𝑇
(
E𝝀𝑛

W−1E𝝀𝑛

𝑇
)+

E (32)

whereW := diag(. . .𝑤𝑖 . . .), and the + exponent denotes the Moore-
Penrose pseudo-inverse. For systems without unconstrained degrees
of freedom, this becomes a regular inverse, and the system can
be solved efficiently with a sparse Cholesky (LLT) decomposition.
Otherwise, a sparse QR solver can be employed. If only trajectories
of the system (i.e. values of s and ¤s) are of interest to the user, this
step can also be omitted, keeping the reduced multipliers only, as
future time steps are not influenced by Lagrange multipliers.

Since the Lagrange multipliers in our formulation have a simple
interpretation, the user can intuitively set weights𝑤𝑖 . For instance,
if minimal actuator torques are desired, one might set𝑤𝑖 = 105 for
multipliers corresponding to position-controlled actuator torques,
and𝑤𝑖 = 1 for other forces and torques. Alternatively, weights could
be chosen based on the relative compliance (inverse stiffness) of
each joint to model the load distribution effect that compliance has
in real mechanisms.

6.3 Fully-Constrained Systems
The solver strategy described thus far is applicable for the general
case of systems with potential unconstrained degrees of freedom.
However, many real-world mechanisms are fully-constrained sys-
tems, that is, for which the pose of all bodies is fully determined by
the kinematic constraints C(s) . Note that this implies only position-
based actuators.
For such systems, a more efficient two-step solver strategy can

be applied, exploiting the fact that position and force variables
can be decoupled. Specifically, we first solve forward kinematics,

Table 4. Classification of Examples.

No redundant Redundant constraints
constraints Not overactuated Overactuated

Fully actuated - Iron Man Gazelle

Passive DoFs
T-Handle

Spinning Top
Pendulum

Hoberman Sphere Satellite

computing s𝑛 in an iterative Gauss-Newton process with update
step

Ks𝑛
𝑇Ks𝑛 Δs𝑛 = −Ks𝑛

𝑇K (33)

where K(s𝑛) concatenates unit-quaternion constraints F5 and kine-
matic constraints C. Note that in the presence of redundant kine-
matic constraints, the kinematic Jacobian, Ks𝑛 , as opposed to the
full Jacobian Fy𝑛 , is rank-deficient along its rows only and therefore
Ks𝑛

𝑇Ks𝑛 is always full-rank for fully-constrained systems, so the
redundancy analysis step can be omitted. The scaling process of
Sec. 6.1 is also not required, as Δ𝑡 does not appear. The system
(Eq. 33) can be solved efficiently with a sparse Cholesky (LLT) de-
composition.

After solving the forward kinematics, velocities can be evaluated
directly as per equations F1 − F2. Finally, we can compute the La-
grange multipliers, 𝝀𝑛 , in a single system solve as per Eq. 32, or
more simply with 𝝀𝑛 = −E𝝀𝑛

−1E if no redundancy is present.

7 Computing Derivatives
Differentiability is an important property for a simulator, with use
in applications such as sensitivity analysis, optimal control, design
optimization or system identification. Our choice of an implicit
integrator simplifies the computation of simulation derivatives with
respect to arbitrary parameters, since no stabilization, or adaptive
time-stepping, that would complicate differentiation, are required.
Because we rely on additive instead of multiplicative quaternion
updates, symbolic differentiation is directly applicable to all building
blocks.

We can compute derivatives for all cases discussed herein, includ-
ing overactuation and redundant constraint subspaces. See Appen-
dix C for details, including how we compute derivatives using the
implicit function theorem, and the use of the adjoint method for eval-
uation speed. Notably, we expand on the standard adjoint method
to handle the case of weighted least-norm Lagrange multipliers.

8 Results
We validate our approach on a diverse set of examples. To illustrate
the generality of our approach, it is useful to categorize the examples
as shown in Tab. 4. The most straightforward case is a fully actuated
system with no redundancy in the constraints. However, in our ex-
perience, even simple real-world examples will tend to fall into one
of the other categories. Our method handles all of these categories
“out of the box”, without requiring any special considerations. Note
in particular that systems can simultaneously be overactuated and
have unconstrained degrees of freedom.While our method is neither
energy- nor momentum-preserving, we show that the energy and

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

A Versatile Quaternion-based Constrained Rigid Body Dynamics • 9

0 2 4 6 8 10

time [s]

−20

−10

0

10

20

a
n
g
u
la

r
v
el

o
ci

ty
[r

a
d

s−
1
]

Angular velocity around intermediate axis

BDF1

BDF2

Semi-implicit

Pareschi-Russo SDIRK

Stiffly-accurate two-stage SDIRK

0 2 4 6 8 10

time [s]

10−10

10−8

10−6

10−4

10−2

100

re
la

ti
v
e

en
er

g
y

lo
ss

[-
]

Relative energy change during simulation

BDF1

BDF2

Semi-implicit

Pareschi-Russo SDIRK

Stiffly-accurate two-stage SDIRK

Fig. 4. T-Handle. Evaluation of velocity and energy preservation of different
integration schemes for a rigid body spinning freely in space, periodically
passing through a rotational instability due to the intermediate axis theo-
rem.

momentum loss is reasonably small and decreases with decreasing
time step, confirming the validity of our approach.

Key specifications for all our examples are summarized in Tab. 5.
Unless explicitly noted, we use a BDF2 integration scheme. For the
first time step, where a single previous state is known, we use a
stiffly-accurate second-order implicit Runge-Kutta step, as is com-
mon practice [Nishikawa 2019]; see also Appendix A. The semi-
implicit scheme, which is used as a baseline in several examples, is
described in Appendix D.
Our implementation is C++-based, relying on Eigen and MKL

Pardiso for linear algebra. For our line search, we use Armijo’s
condition. Solver tolerances are set to 10−9 or 10−10 for all examples.
To set least-norm multiplier weights, unless specified otherwise, we
use the first strategy described at the end of Sec. 6.2, with a large
weight for actuator torques.

T-Handle. We explore the behavior of different time integration
schemes on a single rigid body using a T-handle spinning in zero
gravity. The simulation is initialized with a non-zero initial angular
velocity around the second principal axis in order to trigger the
rotational instability described by the intermediate axis theorem,
resulting in a continuous rotationwhere the object will flip in regular
intervals (see accompanying video).

0 2 4 6 8 10

time [s]

10−10

10−8

10−6

10−4

10−2

100

re
la

ti
v
e

ch
a
n
g
e

o
f
to

ta
l
en

er
g
y

[-
]

Total energy

BDF1

BDF2

Semi-implicit

Pareschi-Russo SDIRK

Stiffly-accurate 2-stage SDIRK

0 2 4 6 8 10

time [s]

10−10

10−8

10−6

10−4

m
a
x

co
n
st

ra
in

t
v
io

la
ti

o
n

[-
]

Constraint satisfaction

Semi-implicit

Pareschi-Russo SDIRK

Fig. 5. Spinning Top. Left: our simulated spinning top exhibits a character-
istic precession and nutation pattern. Top right: the relative energy change
varies significantly between different integration methods. Bottom right:
the semi-implicit and Pareschi-Russo SDIRK integration methods do not
fulfill the mechanical constraints exactly (all others have constraint norms
< 10−10).

We simulate the behavior of the T-handle using BDF1 and BDF2,
semi-implicit integration, as well as two different singly diago-
nally implicit Runge-Kutta (SDIRK) methods (an L-stable two-stage
Pareschi-Russo SDIRK [Pareschi and Russo 2005] and an L-stable
stiffly-accurate two-stage SDIRK scheme [Alexander 1977], see Ap-
pendix A for coefficients).
The simulations use a time step of Δ𝑡 = 1ms and are initialized

with an angular velocity of 15 rad s−1 around the second (interme-
diate) principal axis of the body and initial angular velocities of
0.1 rad s−1 around the first and third principal axes to provide an
initial disturbance.
Fig. 4 shows the evolution of energy and angular velocity for

the different time integration methods. The stiffly-accurate two-
stage SDIRK method preserves energy better than the BDF1 method,
but significantly worse than the BDF2 method, while the Pareschi-
Russo SDIRK method, after an initial energy loss during start-up,
outperforms the other implicit methods.

Spinning Top. We validate the basic constrained rotational dy-
namics of our simulator on a spinning top with a fixed base. The
spinning top is a single, rotationally symmetric body whose motion
is constrained by a spherical joint connecting the tip of the body to
world, thus fixing the translation at this point. When tilted at an
angle and given a sufficiently high initial angular velocity, and in the
absence of friction, such a spinning top will follow a characteristic
precession and nutation pattern (Fig. 5).
Since the spinning top is a passive system without external in-

fluence besides gravity, this example allows us to investigate the

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

10 • Guirec Maloisel, Ruben Grandia, Christian Schumacher, Espen Knoop, and Moritz Bächer

π
128

π
64

π
32

π
16

π
8

π
4

π
2

π

ω0 ·∆t [rad]

10−15

10−12

10−9

10−6

10−3

100

co
n

st
ra

in
t

v
io

la
ti

o
n

[-
]

Constrained

π
128

π
64

π
32

π
16

π
8

π
4

π
2

π

ω0 ·∆t [rad]

10−15

10−12

10−9

10−6

10−3

100

si
m

u
la

ti
o
n

er
ro

r
[r

a
d

]

Constrained

Implicit, k = 1

Implicit, k = 10

SI, k = 1

SI(α = 0), k = 10

SI(α = 1), k = 10

π
128

π
64

π
32

π
16

π
8

π
4

π
2

π

ω0 ·∆t [rad]

10−15

10−12

10−9

10−6

10−3

100

si
m

u
la

ti
o
n

er
ro

r
[r

a
d

]
Unconstrained

Fig. 6. Pendulum. We study the effect of large angular velocities with a
freely-rotating pendulum (top right). Δ𝑡 = 0.01 s for all experiments. Our
implicit scheme ensures constraint satisfaction, while a semi-implicit (SI)
scheme does not.

energy preservation properties of our method for constrained sys-
tems and compare to other integration schemes, see Fig. 5: With a
BDF2 time integration scheme we achieve a reasonably small loss of
energy throughout the simulation and ensure constraint satisfaction.
While Pareschi-Russo SDIRK performs better in terms of energy
preservation, the constraint satisfaction is poor.

Pendulum. To evaluate the performance of our method for large
angular velocities, we consider a gravity-free freely-rotating pen-
dulum where we prescribe an initial velocity and then simulate for
a few time steps. The ground truth solution should maintain this
velocity and satisfy the joint constraint.

See Fig. 6. The top and bottom left plots show the constraint
violation and the simulation error of the pendulum angle against
the angular velocity relative to the time step, i.e., how far a body
rotates in a single step. We show the result after 1 and 10 time steps,
and for our implicit integration scheme as well as a semi-implicit
scheme with and without Baumgarte stabilization. While the semi-
implicit scheme has virtually zero simulation error at the first time
step, the error grows over time due to the effect of the constraint.
However, constraint satisfaction with the semi-implicit scheme is
poor.
Our implicit scheme, in contrast, ensures constraint satisfaction

for any initial velocity, with comparable simulation error to the
semi-implicit scheme after the first time step.
We repeat the experiment on an unconstrained pendulum (i.e.,

a rigid body floating freely in space), see bottom right plot. In this
case, the semi-implicit scheme is near-perfect, as one would expect,
while the performance of our implicit scheme remains as before.

Hoberman Sphere. Next, we consider a Hoberman sphere — a com-
bination of radial scissor linkages [Patel and Ananthasuresh 2007]
forming a ball with a single degree of freedom — being thrown into

Fig. 7. Hoberman Sphere. Left: we simulate a spinning Hoberman sphere
thrown into the air. Right: the spin of the sphere forces it into an oscillating
pattern of expansion and contraction. See video for the full sequence.

Fig. 8. Satellite. We simulate the overactuated deployment mechanism of
a solar panel on a satellite floating in space.

the air with a spin. The spin causes the sphere to expand, and while a
real mechanism would run into collisions, our idealized mechanism
passes through the kinematic singularity at full expansion due to
its momentum, contracting until the centripetal forces again cause
the cycle to repeat. The system is fully passive and highly overcon-
strained, only influenced by its initial condition and gravitational
forces. The presence of a kinematic singularity, even regularized
by the system dynamics, is a stress test for our constraint elimina-
tion scheme. We handle this robustly by continuously checking the
validity of our constraint elimination and recomputing if necessary.

The semi-implicit approach struggles in this setting and does
not simulate the expansion and contraction: imperfect constraint
satisfaction causes misalignment of the many parallel axes, creating
additional internal forces which effectively lock the internal degree
of freedom of the mechanism. The global trajectory does remain
consistent though.

We refer to the accompanying video for a visualization of the full
simulation.

Satellite. Here, we simulate the deployment sequence of a solar
panel on a satellite in space, Fig. 8. The satellite mechanism is over-
actuated, with 7 actuators working in concert in order to minimize
internal loads in the structure. This example is both overconstrained
and has passive degrees of freedom, as it is flying through space, a
combination of properties that our method handles natively.

Iron Man. We simulate the rigid body dynamics of a complex
Audio-Animatronics® Iron Man figure executing a motion. This is
a complex example due to the size of the problem (see Tab. 5), the

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

A Versatile Quaternion-based Constrained Rigid Body Dynamics • 11

Fig. 9. Iron Man. Top: we simulate an Audio-Animatronics® figure with
a complex internal structure and intricate mechanisms. Bottom: forces
and torques acting on single rigid bodies during the motion. © MARVEL,
Disneyland Paris

large range of rigid body masses (0.3 g to 49.2 kg), and the kinematic
loops — in particular in the hands. This example is fully actuated and
overconstrained, and the base is grounded so there are no passive
system dynamics.

Fig. 9 shows illustrative snapshots of rigid body forces and torques
at instances in time; see also the accompanying video.

Gazelle. We consider for this demonstrator anAudio-Animatronics®
character with a fixed base, whose legs form a kinematic loop with
the ground. Several linkages form smaller loops within this large
loop, resulting in a complex kinematic structure (7 loops in total).
Furthermore, the legs are overactuated: 8 actuators in total con-
trol the 6 degrees of freedom of the pelvis. This provides benefits
with respect to the distribution of efforts and the regularization
of otherwise singular configurations. However, it complicates the
simulation, as actuators cannot be considered in isolation, since

actuator torques
(uniform least-norm)

actuator torques
(weighted least-norm)

0 2000 4000 6000 8000

time [ms]

−100

0

a
ct

u
a
to

r
to

rq
u
e

[N
m

]

Actuator torque, lower left hip actuator

uniform least-norm solution

weighted least-norm solution

Fig. 10. Gazelle: Overactuation Subspace Top: we simulate a dancing
motion on this Audio-Animatronics® figure. The overactuation in the leg
mechanism allows us to choose between different weights for the least-
norm solution (center; right). Bottom: actuator torques for an individual hip
actuator. For this actuator, the uniform least-norm solution has significantly
higher torques than the weighted least-norm solution.

arbitrary motion inputs are now generally infeasible, and some
kinematic constraints become redundant. Our simulator natively
handles this situation.

We simulate a dancing animation on this character with position-
controlled actuators, using an inverse kinematics tool [Schumacher
et al. 2021] for motion retargeting to ensure that the set of actu-
ator positions are always feasible. Due to the redundancy in the
constraints, even though there is a single valid kinematic trajec-
tory, there are several solutions to the dynamics problem in terms
of forces and torques at the joints. Using the strategy exposed in
Sec. 6.2, we can pick a solution prioritizing actuator torque reduc-
tion. In comparison, using a naive least-norm solution results in 63%
higher root-mean-square torques, averaged over the 8 actuators in
the legs. See Fig. 10.

To validate that both actuator torque sequences result in the same
kinematic motion, we recreate the simulation with force-controlled
actuators, using the torque sequences computed by the first simu-
lation as feedforward input. For stability, we add feedback torques
provided by a simple PD controller, computed based on the reference
actuator positions. We were able to validate that the resulting mo-
tion matched the reference motion, with average and peak actuator
position errors of 0.03◦ and 1.44◦, respectively.
For the same motion we evaluate the semi-implicit scheme for

different stabilization parameters and at two step sizes (Fig. 11, left).
The semi-implicit scheme shows significantly higher constraint

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

12 • Guirec Maloisel, Ruben Grandia, Christian Schumacher, Espen Knoop, and Moritz Bächer

0 2 4 6 8

time [s]

10−15

10−13

10−11

10−9

10−7

10−5

10−3

10−1

101

co
n

st
ra

in
t

v
io

la
ti

o
n

[-
]

∆t = 0.1

0 2 4 6 8

time [s]

10−15

10−13

10−11

10−9

10−7

10−5

10−3

10−1

101

co
n

st
ra

in
t

v
io

la
ti

o
n

[-
]

∆t = 0.01

α = 0.0

α = 0.2

α = 0.4

α = 0.6

α = 0.8

α = 1.0

Implicit

Fig. 11. Gazelle: Effect of Step Size. Left: we simulate the gazelle dancing
motion at two step sizes with the semi-implicit scheme with different stabi-
lization parameters and compare the result to the proposed implicit scheme.
The reported violation is the maximum absolute value of the constraint
vector. For the implicit scheme, the tolerance is set to 10−10. Right: the sim-
ulation state at 𝑡 = 4.7 s for the semi-implicit scheme with Δ𝑡 = 0.1, 𝛼 = 1.0.
The constraint violation is clearly visible for the position-based actuator at
the elbow and the passive degree of freedom in the knee.

violation and has a constraint violation that scales with the time step.
For a time step of Δ𝑡 = 0.1s, which one might use in an optimization
context, the violation is visually noticeable (see Fig. 11, right). In
contrast, the proposed implicit methods satisfies the joint constraints
up to the specified tolerance independent of the time step.

Note that as this is a position-controlled system without passive
degrees of freedom, the simulation error will not accumulate over
time, meaning that large time steps may be used.

In the accompanying video, we further showcase the usefulness
of a general actuator model that allows for any combination of actu-
ated degrees of freedom, for example when modifying an animation
that only affects part of a model. By extracting the upper body of
the Gazelle model and assigning a position-based actuator with six
actuated degrees of freedom to the torso component, the upper body
can be driven by the solution of an initial full-body simulation. A
user can then iterate on the upper body motion and receive sim-
ulation feedback without having to run a simulation for the full
model, while still accurately capturing the influence of the lower
body dynamics on the upper body.

Sensitivity Analysis. We consider two alternative non-overactuated
designs for our Gazelle character, in which 2 out of 8 actuators in
the lower body are replaced with passive joints for cost and weight
savings. While the kinematic sequences are identical, the choice
of which actuators to remove affects the closeness to kinematic
singularities and thus the motion stability on the physical system.
Leveraging the differentiability of our simulator, we can guide de-
sign choices by computing, for our dancing motion, the sensitivity

act. 1
act. 3

act. 5

act. 7act. 8

act. 6

act. 4
act. 2

2 3 4 5 6
time [s]

M
ax

se
n

si
ti

v
it

y

Design 1

Design 2

Fig. 12. Sensitivity Analysis on the Gazelle Dancing Motion. Plot of
the worst-case sensitivity of rigid body poses to lower-body actuator torque
inputs (i.e. maximal absolute coefficient of the sensitivity matrix), for two
possible alternative designs of the Gazelle character. In design 1, actuators
1 and 8 are replaced with passive joints; in design 2, actuators 5 and 6.
Design 2 features large sensitivity peaks at several points in the animation,
indicating likely instabilities on the physical design.

0 5 10 15 20 25

Iterations

10−3

10−1

101

103

O
b

je
ct

iv
e

Optimization progress

Target 1

Target 2

Target 3

Fig. 13. Trajectory Optimization. Progress of our trajectory optimization
for the Hoberman sphere throw sequence, for 3 different target states. Using
simulation derivatives, we can consistently reduce the objective (error with
respect to the target) under a low tolerance in a few iterations.

over time of rigid body poses to force-control inputs. A worst-case
sensitivity comparison, displayed in Fig 12, shows clear superiority
of one option in terms of robustness to perturbations.

Optimization Problem. We demonstrate how the differentiability
of our simulator enables it to be used in the context of gradient-
based optimization problems. Specifically, we consider a throw of the
Hoberman sphere, and solve for the initial velocities and “opening”
angle required such that a prescribed target pose is matched at a
prescribed time. The converged optimization is able to closely match
the target state. We solve the optimization problem using a standard
quasi-Newton (BFGS) implementation [Nocedal and Wright 1999],
using the adjoint method to differentiate a target-matching objective
with respect to the initial state. Fig. 13 shows the optimization
progress over time, and we refer to the accompanying video for the
resultant trajectories at different stages of the optimization.

Performance. See Tab. 6 for performance statistics on the different
examples. Smaller time steps are required when systems have fast
and passive dynamics as demonstrated by the Spinning Top and
Pendulum examples. We also report the performance difference

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

A Versatile Quaternion-based Constrained Rigid Body Dynamics • 13

Table 5. Key Specifications for Mechanisms.

comp. const. const. eqs. cont. vars. st. vars.

T-Handle 1 - - - 14
Spinning top 1 1 3 - 17
Pendulum 1 1 5 - 19
Hoberman sphere 240 420 1980 - 5340
Satellite 26 37 192 7 556
Iron Man 151 198 982 27 3096
Gazelle 38 45 236 22 768

comp.: number of components; consts.: number of constraints; const. eqs.: number
of constraint equations; cont. vars.: number of control variables; st. vars.: number of
state variables.

Table 6. Key Time Performance Statistics.

act. Δ𝑡 seq. len. solver step

T-Handle passive 1 ms 10 s general 0.037 ms

Spinning top passive 0.1 ms 10 s general 0.045 ms

Hoberman passive 10 ms 4 s general 1138.03 ms

Satellite pos. control 33 ms 10 s general 7.75 ms

Iron Man pos. control 33 ms 138.5 s general 26.89 ms
fully-constr. 4.19 ms

Gazelle pos. control 10 ms 9.82 s
general 3.55 ms
fully-constr. 0.84 ms

force control general 6.11 ms

act.: type of actuation (passive, position control, or force control); Δ𝑡 : time step of the
simulation; seq. len.: length of the simulation sequence; solver: type of solver used
(general or fast solver for fully-constrained systems); step: average time to compute a
single simulation step. Computations were performed on a machine with an AMD
Ryzen Threadripper Pro 3955WX (16 cores, 3.9 GHz) and 64 GB of RAM.

between the general and the fully-constrained solvers, and between
force control and position control on the Gazelle figure.

9 Conclusions
We have devised an implicitly-integrated constrained rigid body
dynamics that is quaternion-based, together with a modular set of
constraints that facilitates the implementation of common joints
and actuators. Our implicit integration guarantees that constraints
are satisfied to numerical tolerances, and our solver strategy ro-
bustly simulates systems with either less or more constraints than
unknown states or overactuation.

In comparison to simulators that keep quaternions at unit length
with specialized non-additive gradient updates [Simo and Wong
1991], our final system of discretized equations is well-suited for
symbolic differentiation and numerical optimization with standard
additive updates. Moreover, our simulator remains fully differen-
tiable, even if subspaces are present in constraint forces or torques,
or corresponding Lagrange multipliers.

9.1 Limitations and Future Work
While the time complexity of our simulation enables the use of small
time steps, and therefore to achieve the desired accuracy even for
longer motion sequences, our time integration is not energy- or
momentum-preserving.
Moreover, while our simulator interfaces with generic spatial

mechanisms, we leave it as future work to model frictional contact

at the joint level, between pairs of bodies, or a body and the envi-
ronment. Simulators that model joints with frictional contact can
account for joint-level sim-to-real gaps [Ferguson et al. 2021], at
the cost of significantly higher time complexity. Other options for a
practical implementation include using implicit penalties, or solving
the dual problem separately for contact forces at each time step;
the computed forces would then be fed to our method as external
forces.
Even for complex mechanical systems with hundreds of bodies

and constraints, and despite the use of implicit integration, we can
solve for the system state at the next time step in a few milliseconds,
opening exciting future avenues in the exploration of real-time,
closed-loop control applications.

We have yet to explore the full potential of the differentiability of
our simulator, with rich applications in optimal control and design,
and the identification of optimal simulation parameters to close
sim-to-real gaps.

References
Roger Alexander. 1977. Diagonally Implicit Runge-Kutta Methods for Stiff O.D.E.’s.

SIAM J. Numer. Anal. 14, 6 (1977), 1006–1021.
Carmen Arévalo and Per Lötstedt. 1995. Improving the accuracy of BDF methods

for index 3 differential-algebraic equations. BIT Numerical Mathematics 35 (1995),
297–308.

Uri MAscher, Hongsheng Chin, Linda R Petzold, and Sebastian Reich. 1995. Stabilization
of constrained mechanical systems with daes and invariant manifolds. Journal of
Structural Mechanics 23, 2 (1995), 135–157.

Moritz Bächer, Stelian Coros, and Bernhard Thomaszewski. 2015. LinkEdit: interactive
linkage editing using symbolic kinematics. ACM Trans. Graph. 34, 4, Article 99
(2015).

Ronen Barzel and Alan H Barr. 1988. A modeling system based on dynamic constraints.
In Proceedings of the 15th annual conference on Computer graphics and interactive
techniques. 179–188.

Joachim Baumgarte. 1972. Stabilization of constraints and integrals of motion in
dynamical systems. Computer methods in applied mechanics and engineering 1, 1
(1972), 1–16.

Jan Bender, Kenny Erleben, and Jeff Trinkle. 2014. Interactive simulation of rigid body
dynamics in computer graphics. In Computer Graphics Forum, Vol. 33. Wiley Online
Library, 246–270.

Peter Betsch and Ralf Siebert. 2009. Rigid body dynamics in terms of quaternions:
Hamiltonian formulation and conserving numerical integration. Internat. J. Numer.
Methods Engrg. 79, 4 (2009), 444–473.

Carlo L Bottasso, Daniel Dopico, and Lorenzo Trainelli. 2008. On the optimal scaling of
index three DAEs in multibody dynamics. Multibody System Dynamics 19 (2008),
3–20.

Kathryn Eleda Brenan, Stephen L Campbell, and Linda Ruth Petzold. 1995. Numerical
solution of initial-value problems in differential-algebraic equations. SIAM.

Yang Cao, Shengtai Li, and Linda Petzold. 2002. Adjoint sensitivity analysis for
differential-algebraic equations: algorithms and software. Journal of computational
and applied mathematics 149, 1 (2002), 171–191.

Stelian Coros, Bernhard Thomaszewski, Gioacchino Noris, Shinjiro Sueda, Moira For-
berg, Robert W. Sumner, Wojciech Matusik, and Bernd Bickel. 2013. Computational
design of mechanical characters. ACM Trans. Graph. 32, 4, Article 83 (2013).

Tom Erez, Yuval Tassa, and Emanuel Todorov. 2015. Simulation tools for model-based
robotics: Comparison of Bullet, Havok, MuJoCo, ODE and PhysX. In 2015 IEEE
International Conference on Robotics and Automation (ICRA). 4397–4404.

Kenny Erleben. 2017. Rigid body contact problems using proximal operators. In Pro-
ceedings of the ACM SIGGRAPH / Eurographics Symposium on Computer Animation.
Article 13.

Zachary Ferguson, Minchen Li, Teseo Schneider, Francisca Gil-Ureta, Timothy Langlois,
Chenfanfu Jiang, Denis Zorin, Danny M. Kaufman, and Daniele Panozzo. 2021.
Intersection-free Rigid Body Dynamics. ACM Transactions on Graphics (SIGGRAPH)
40, 4, Article 183 (2021).

Moritz Geilinger, David Hahn, Jonas Zehnder, Moritz Bächer, Bernhard Thomaszewski,
and Stelian Coros. 2020. ADD: Analytically Differentiable Dynamics for Multi-Body
Systems with Frictional Contact. ACM Trans. Graph. 39, 6, Article 190 (2020).

F. Sebastin Grassia. 1998. Practical parameterization of rotations using the exponential
map. J. Graph. Tools 3, 3 (1998), 20 pages.

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

14 • Guirec Maloisel, Ruben Grandia, Christian Schumacher, Espen Knoop, and Moritz Bächer

Edward J Haug. 1989. Computer aided kinematics and dynamics of mechanical systems.
Vol. 1. Allyn and Bacon Boston.

Shayan Hoshyari, Hongyi Xu, Espen Knoop, Stelian Coros, and Moritz Bächer. 2019.
Vibration-minimizing motion retargeting for robotic characters. ACM Trans. Graph.
38, 4, Article 102 (2019).

Danny M. Kaufman, Timothy Edmunds, and Dinesh K. Pai. 2005. Fast frictional dy-
namics for rigid bodies. ACM Trans. Graph. 24, 3 (2005).

Danny M. Kaufman, Shinjiro Sueda, Doug L. James, and Dinesh K. Pai. 2008. Staggered
projections for frictional contact in multibody systems. ACM Trans. Graph. 27, 5,
Article 164 (2008).

Marin Kobilarov, Keenan Crane, and Mathieu Desbrun. 2009. Lie group integrators for
animation and control of vehicles. ACM Trans. Graph. 28, 2, Article 16 (2009).

Lei Lan, Danny M. Kaufman, Minchen Li, Chenfanfu Jiang, and Yin Yang. 2022. Affine
body dynamics: fast, stable and intersection-free simulation of stiff materials. ACM
Trans. Graph. 41, 4, Article 67 (2022).

Minchen Li, Zachary Ferguson, Teseo Schneider, Timothy Langlois, Denis Zorin, Daniele
Panozzo, Chenfanfu Jiang, and Danny M. Kaufman. 2020. Incremental potential
contact: intersection- and inversion-free, large-deformation dynamics. ACM Trans.
Graph. 39, 4, Article 49 (2020).

Guirec Maloisel, Espen Knoop, Bernhard Thomaszewski, Moritz Bächer, and Stelian
Coros. 2021. Singularity-Aware Design Optimization for Multi-Degree-of-Freedom
Spatial Linkages. IEEE Robotics and Automation Letters 6, 4 (2021).

Guirec Maloisel, Christian Schumacher, Espen Knoop, Ruben Grandia, and Moritz
Bächer. 2023. Optimal Design of Robotic Character Kinematics. ACM Transactions
on Graphics (TOG) 42, 6 (2023), 1–15.

Michael Möller and Christoph Glocker. 2012. Rigid body dynamics with a scalable body,
quaternions and perfect constraints. Multibody System Dynamics 27 (04 2012).

M.B. Nielsen and S. Krenk. 2012. Conservative integration of rigid body motion by
quaternion parameters with implicit constraints. Internat. J. Numer. Methods Engrg.
92, 8 (2012), 734–752.

P. E. Nikravesh, O. K. Kwon, and R. A. Wehage. 1985a. Euler Parameters in Computa-
tional Kinematics and Dynamics. Part 2. Journal of Mechanisms, Transmissions, and
Automation in Design 107, 3 (09 1985), 366–369.

P. E. Nikravesh, R. A. Wehage, and O. K. Kwon. 1985b. Euler Parameters in Computa-
tional Kinematics and Dynamics. Part 1. Journal of Mechanisms, Transmissions, and
Automation in Design 107, 3 (09 1985), 358–365.

Hiroaki Nishikawa. 2019. On Large Start-Up Error of BDF2. J. Comput. Phys. 392 (05
2019). doi:10.1016/j.jcp.2019.04.070

Jorge Nocedal and Stephen J Wright. 1999. Numerical optimization. Springer.
Lorenzo Pareschi and Giovanni Russo. 2005. Implicit–Explicit Runge–Kutta Schemes

and Applications to Hyperbolic Systems with Relaxation. Journal of Scientific
Computing 25 (2005), 129–155.

Jiten Patel and G.K. Ananthasuresh. 2007. A kinematic theory for radially foldable planar
linkages. International Journal of Solids and Structures 44, 18 (2007), 6279–6298.

Caleb Rucker. 2018. Integrating Rotations Using Nonunit Quaternions. IEEE Robotics
and Automation Letters 3, 4 (2018), 2979–2986.

Christian Schumacher, Espen Knoop, and Moritz Bächer. 2021. A Versatile Inverse
Kinematics Formulation for Retargeting Motions Onto Robots With Kinematic
Loops. IEEE Robotics and Automation Letters 6, 2 (2021).

J. C. Simo and K. K. Wong. 1991. Unconditionally stable algorithms for rigid body
dynamics that exactly preserve energy and momentum. Internat. J. Numer. Methods
Engrg. 31, 1 (1991), 19–52.

Breannan Smith, Danny M. Kaufman, Etienne Vouga, Rasmus Tamstorf, and Eitan
Grinspun. 2012. Reflections on simultaneous impact. ACM Trans. Graph. 31, 4,
Article 106 (2012).

Alessandro Tasora and Paolo Righettini. 1999. Application of quaternion algebra
to the efficient computation of jacobians for holonomic-rheonomic constraints.
EUROMECH 404, Lisboa (1999).

Bernhard Thomaszewski, Stelian Coros, Damien Gauge, Vittorio Megaro, Eitan Grin-
spun, and Markus Gross. 2014. Computational design of linkage-based characters.
ACM Trans. Graph. 33, 4, Article 64 (2014).

Robin Tomcin, Dominik Sibbing, and Leif Kobbelt. 2014. Efficient enforcement of hard
articulation constraints in the presence of closed loops and contacts. Computer
Graphics Forum 33, 2 (2014).

Maxime Tournier, Matthieu Nesme, Benjamin Gilles, and François Faure. 2015. Stable
constrained dynamics. ACM Trans. Graph. 34, 4, Article 132 (2015).

Firdaus Udwadia and Aaron Schutte. 2010. An Alternative Derivation of the Quater-
nion Equations of Motion for Rigid-Body Rotational Dynamics. Journal of Applied
Mechanics-transactions of The Asme - J APPL MECH 77 (07 2010).

Ying Wang, Nicholas J. Weidner, Margaret A. Baxter, Yura Hwang, Danny M. Kaufman,
and Shinjiro Sueda. 2019. RedMax: efficient & flexible approach for articulated
dynamics. ACM Trans. Graph. 38, 4 (2019).

Victoria Wieloch and Martin Arnold. 2021. BDF integrators for constrained mechanical
systems on Lie groups. J. Comput. Appl. Math. 387 (2021), 112517.

Andrew Witkin and David Baraff. 1997. Physically Based Modeling: Principles and
Practice Differential Equation Basics. Course Note A SIGGRAPH 97 (1997).

Xiaoming Xu, Jiahui Luo, and Zhigang Wu. 2020. The numerical influence of additional
parameters of inertia representations for quaternion-based rigid body dynamics.
Multibody System Dynamics 49 (07 2020).

A Runge-Kutta Parameters
We provide the Runge-Kutta coefficients using a Butcher tableau,
which takes the form

𝑐1 𝑎11 · · · 𝑎1𝑠
.
.
.

.

.

.
. . .

.

.

.

𝑐𝑠 𝑎𝑠1 · · · 𝑎𝑠𝑠

𝑏1 · · · 𝑏𝑠

.

The coefficients for the Pareschi-Russo DIRK [Pareschi and Russo
2005] are

1 −
√

2
2 1 −

√
2

2 0√
2

2
√

2 − 1 1 −
√

2
2

1
2

1
2

.

The coefficients for the stiffly-accurate two-stage SDIRK [Alexan-
der 1977], which we also use for the initial step when integrating
with BDF2, are

1 −
√

2
2 1 −

√
2

2 0
1

√
2 − 1 1 −

√
2

2√
2 − 1 1 −

√
2

2

.

B Redundant Constraints Analysis
We reproduce here the main steps of the redundancy analysis tech-
nique introduced in [Maloisel et al. 2023]. We analyze the forward
kinematics Jacobian Ks𝑛 (introduced in Sec. 6.3) for the modified
system in which position-control actuators are turned into corre-
sponding passive joints. The Jacobian is evaluated on a reference
state of the system, and its rows are normalized. Relying on a Sin-
gular Value Decomposition, we compute an orthonormal basis Z of
the left-kernel of Ks𝑛 , i.e. such that Z𝑇Ks𝑛 = 0. Each row 𝑘 of these
equations indicates one degree of redundancy∑︁

𝑖

𝑧𝑖𝑘k𝑖 = 0, (34)

where k𝑖 refers to row 𝑖 of Ks𝑛 . For any 𝑗 such that 𝑧 𝑗𝑘 ≠ 0, Eq. 34
shows that k𝑗 could be eliminated, as it is already in the span of the
other constraints:

k𝑗 = −
∑︁
𝑖≠𝑗

𝑧𝑖𝑘

𝑧 𝑗𝑘
k𝑖 . (35)

So that remaining rows of Ks𝑛 span the same subspace (otherwise
we would introduce additional mobility in the system), we pick 𝑗

yielding the smallest right-hand-side coefficients in Eq. 35 (i.e. so
that k𝑗 is the “least” orthogonal to remaining constraints)

𝑗 = argmin
𝑗

min
𝑘

∑︁
𝑖≠𝑗

𝑧2
𝑖𝑘

𝑧2
𝑗𝑘

. (36)

Marking k𝑗 as eliminated, we also eliminate the corresponding
equation 𝑘 from Z, subtracting it from other equations

𝑧:𝑖 ← 𝑧:𝑖 −
𝑧 𝑗𝑖

𝑧 𝑗𝑘
𝑧:𝑘 . (37)

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

https://doi.org/10.1016/j.jcp.2019.04.070

A Versatile Quaternion-based Constrained Rigid Body Dynamics • 15

Table 7. Constraints We abbreviate transformed follower axis a𝑥 with r𝐹𝑥 = R(q𝐹)a𝑥 and transformed base axis a𝑥 with r𝐵𝑥 = R(q𝐵)a𝑥 (and similar for
other axes). To abbreviate the two moment arms for translational constraints, we introduce m𝐹 = R(q𝐹)x𝐹rb and m𝐵 = R(q𝐹)x𝐹rb + c

𝐹 − c𝐵 . To form the
base body torques, 𝝉𝐵 , for translational constraints, we replace m𝐹 with m𝐵 and multiply the individual force terms with −1 in the expressions for 𝝉𝐹 . In
rotational constraints and corresponding torques for position-based actuators, we use abbreviations r𝐹𝑦 (𝑝𝑥) = R(q𝐹)R[𝑝𝑥 , a𝑥]𝑇 a𝑦 on the follower side and

r𝐵𝑦 (𝑝𝑥) = R(q𝐵)R[𝑝𝑥 , a𝑥]a𝑦 on the base side (and similar for other axes and parameters). To parameterize all rotational degrees of freedom (Rotational

Constraints, free, position-based actuators), we use a quaternion p and the abbreviation r𝐹𝑥 (p) = R(q𝐹)AR(p)e𝑥 where e𝑥 is the first unit vector (and similar
for unit vectors e𝑥 and e𝑦). Note that we use two different sets of Lagrange multipliers 𝜆𝑥 , 𝜆𝑦 and 𝜆𝑧 for the two constraint categories (translational vs.
rotational). 𝑝 in a translational constraint is either a position or a force parameter, and 𝑝 in a rotational constraint is either an angle or torque parameter. For
rotational constraints, we also provide the consistency constraints that we use to prevent flips. To obtain formulas for different axes for the 1 DoF or 2 DoF
cases, the roles of (𝑥, 𝑦, 𝑧) can be permuted to (𝑦, 𝑧, 𝑥) or (𝑧, 𝑥, 𝑦) .

Translational Constraints

joints position-based actuators force-based actuators

C f𝐹 𝝉𝐹 C f𝐹 𝝉𝐹 C f𝐹 𝝉𝐹

fix
ed

r𝐵𝑥 · d
r𝐵𝑦 · d
r𝐵𝑧 · d

+r𝐵𝑥 𝜆𝑥
+r𝐵𝑦𝜆𝑦
+r𝐵𝑧 𝜆𝑧

+m𝐹 × (r𝐵𝑥 𝜆𝑥)
+m𝐹 × (r𝐵𝑦𝜆𝑦)
+m𝐹 × (r𝐵𝑧 𝜆𝑧)

r𝐵𝑥 · d
r𝐵𝑦 · d
r𝐵𝑧 · d

+r𝐵𝑥 𝜆𝑥
+r𝐵𝑦𝜆𝑦
+r𝐵𝑧 𝜆𝑧

+m𝐹 × (r𝐵𝑥 𝜆𝑥)
+m𝐹 × (r𝐵𝑦𝜆𝑦)
+m𝐹 × (r𝐵𝑧 𝜆𝑧)

r𝐵𝑥 · d
r𝐵𝑦 · d
r𝐵𝑧 · d

+r𝐵𝑥 𝜆𝑥
+r𝐵𝑦𝜆𝑦
+r𝐵𝑧 𝜆𝑧

+m𝐹 × (r𝐵𝑥 𝜆𝑥)
+m𝐹 × (r𝐵𝑦𝜆𝑦)
+m𝐹 × (r𝐵𝑧 𝜆𝑧)

1
D
oF r𝐵𝑦 · d

r𝐵𝑧 · d
+r𝐵𝑦𝜆𝑦
+r𝐵𝑧 𝜆𝑧

+m𝐹 × (r𝐵𝑦𝜆𝑦)
+m𝐹 × (r𝐵𝑧 𝜆𝑧)

r𝐵𝑥 · d − 𝑝𝑥
r𝐵𝑦 · d
r𝐵𝑧 · d

+r𝐵𝑥 𝜆𝑥
+r𝐵𝑦𝜆𝑦
+r𝐵𝑧 𝜆𝑧

+m𝐹 × (r𝐵𝑥 𝜆𝑥)
+m𝐹 × (r𝐵𝑦𝜆𝑦)
+m𝐹 × (r𝐵𝑧 𝜆𝑧)

r𝐵𝑦 · d
r𝐵𝑧 · d

+r𝐵𝑥 𝑝𝑥
+r𝐵𝑦𝜆𝑦
+r𝐵𝑧 𝜆𝑧

+m𝐹 × (r𝐵𝑥 𝑝𝑥)
+m𝐹 × (r𝐵𝑦𝜆𝑦)
+m𝐹 × (r𝐵𝑧 𝜆𝑧)

2
D
oF

r𝐵𝑧 · d +r𝐵𝑧 𝜆𝑧 +m𝐹 × (r𝐵𝑧 𝜆𝑧)

r𝐵𝑥 · d − 𝑝𝑥
r𝐵𝑦 · d − 𝑝𝑦

r𝐵𝑧 · d

+r𝐵𝑥 𝜆𝑥
+r𝐵𝑦𝜆𝑦
+r𝐵𝑧 𝜆𝑧

+m𝐹 × (r𝐵𝑥 𝜆𝑥)
+m𝐹 × (r𝐵𝑦𝜆𝑦)
+m𝐹 × (r𝐵𝑧 𝜆𝑧) r𝐵𝑧 · d

+r𝐵𝑥 𝑝𝑥
+r𝐵𝑦𝑝𝑦
+r𝐵𝑧 𝜆𝑧

+m𝐹 × (r𝐵𝑥 𝑝𝑥)
+m𝐹 × (r𝐵𝑦𝑝𝑦)
+m𝐹 × (r𝐵𝑧 𝜆𝑧)

fr
ee

r𝐵𝑥 · d − 𝑝𝑥
r𝐵𝑦 · d − 𝑝𝑦
r𝐵𝑧 · d − 𝑝𝑧

+r𝐵𝑥 𝜆𝑥
+r𝐵𝑦𝜆𝑦
+r𝐵𝑧 𝜆𝑧

+m𝐹 × (r𝐵𝑥 𝜆𝑥)
+m𝐹 × (r𝐵𝑦𝜆𝑦)
+m𝐹 × (r𝐵𝑧 𝜆𝑧)

+r𝐵𝑥 𝑝𝑥
+r𝐵𝑦𝑝𝑦
+r𝐵𝑧 𝑝𝑧

+m𝐹 × (r𝐵𝑥 𝑝𝑥)
+m𝐹 × (r𝐵𝑦𝑝𝑦)
+m𝐹 × (r𝐵𝑧 𝑝𝑧)

Rotational Constraints

joints position-based actuators force-based actuators

C 𝝉𝐹 consist. C C 𝝉𝐹 consist. C C 𝝉𝐹 consist. C

fix
ed

r𝐹𝑦 · r𝐵𝑧
r𝐹𝑧 · r𝐵𝑥
r𝐹𝑥 · r𝐵𝑦

+(r𝐹𝑦 × r𝐵𝑧)𝜆𝑥
+(r𝐹𝑧 × r𝐵𝑥)𝜆𝑦
+(r𝐹𝑥 × r𝐵𝑦)𝜆𝑧

r𝐹𝑥 · r𝐵𝑥
r𝐹𝑦 · r𝐵𝑦
r𝐹𝑧 · r𝐵𝑧

r𝐹𝑦 · r𝐵𝑧
r𝐹𝑧 · r𝐵𝑥
r𝐹𝑥 · r𝐵𝑦

+(r𝐹𝑦 × r𝐵𝑧)𝜆𝑥
+(r𝐹𝑧 × r𝐵𝑥)𝜆𝑦
+(r𝐹𝑥 × r𝐵𝑦)𝜆𝑧

r𝐹𝑥 · r𝐵𝑥
r𝐹𝑦 · r𝐵𝑦
r𝐹𝑧 · r𝐵𝑧

r𝐹𝑦 · r𝐵𝑧
r𝐹𝑧 · r𝐵𝑥
r𝐹𝑥 · r𝐵𝑦

+(r𝐹𝑦 × r𝐵𝑧)𝜆𝑥
+(r𝐹𝑧 × r𝐵𝑥)𝜆𝑦
+(r𝐹𝑥 × r𝐵𝑦)𝜆𝑧

r𝐹𝑥 · r𝐵𝑥
r𝐹𝑦 · r𝐵𝑦
r𝐹𝑧 · r𝐵𝑧

1
D
oF −r𝐹𝑥 · r𝐵𝑧

r𝐹𝑥 · r𝐵𝑦
−(r𝐹𝑥 × r𝐵𝑧)𝜆𝑦
+(r𝐹𝑥 × r𝐵𝑦)𝜆𝑧

r𝐹𝑥 · r𝐵𝑥 r𝐹𝑦 (𝑝𝑥) · r𝐵𝑧
−r𝐹𝑥 · r𝐵𝑧
r𝐹𝑥 · r𝐵𝑦

+(r𝐹𝑦 (𝑝𝑥) × r𝐵𝑧)𝜆𝑥
−(r𝐹𝑥 × r𝐵𝑧)𝜆𝑦
+(r𝐹𝑥 × r𝐵𝑦)𝜆𝑧

r𝐹𝑥 · r𝐵𝑥
r𝐹𝑦 (𝑝𝑥) · r𝐵𝑦
r𝐹𝑧 (𝑝𝑥) · r𝐵𝑧

−r𝐹𝑥 · r𝐵𝑧
r𝐹𝑥 · r𝐵𝑦

+r𝐵𝑥 𝑝𝑥
−(r𝐹𝑥 × r𝐵𝑧)𝜆𝑦
+(r𝐹𝑥 × r𝐵𝑦)𝜆𝑧

r𝐹𝑥 · r𝐵𝑥

2
D
oF

−r𝐹𝑦 · r𝐵𝑥 −(r𝐹𝑦 × r𝐵𝑥)𝜆𝑧

r𝐹𝑦 · r𝐵𝑧 (𝑝𝑥)
r𝐹𝑧 (𝑝𝑦) · r𝐵𝑥
−r𝐹𝑦 · r𝐵𝑥

+(r𝐹𝑦 × r𝐵𝑧 (𝑝𝑥))𝜆𝑥
+(r𝐹𝑧 (𝑝𝑦) × r𝐵𝑥)𝜆𝑦
−(r𝐹𝑦 × r𝐵𝑥)𝜆𝑧

r𝐹𝑥 (𝑝𝑦) · r𝐵𝑥
r𝐹𝑦 · r𝐵𝑦 (𝑝𝑥)

r𝐹𝑧 (𝑝𝑦) · r𝐵𝑧 (𝑝𝑥) −r𝐹𝑦 · r𝐵𝑥

r𝐹𝑥 𝑝𝑥
+r𝐵𝑦 𝑝𝑦

−(r𝐹𝑦 × r𝐵𝑥)𝜆𝑧

fr
ee

r𝐹𝑦 (p) · r𝐵𝑧
r𝐹𝑧 (p) · r𝐵𝑥
r𝐹𝑥 (p) · r𝐵𝑦

+(r𝐹𝑦 (p) × r𝐵𝑧)𝜆𝑥
+(r𝐹𝑧 (p) × r𝐵𝑥)𝜆𝑦
+(r𝐹𝑥 (p) × r𝐵𝑦)𝜆𝑧

r𝐹𝑥 (p) · r𝐵𝑥
r𝐹𝑦 (p) · r𝐵𝑦
r𝐹𝑧 (p) · r𝐵𝑧

+r𝐵𝑥 𝑝𝑥
+r𝐵𝑦𝑝𝑦
+r𝐵𝑧 𝑝𝑧

We iterate the process until we have used all equations from Z.
For overactuated systems, the process is then repeated after rein-

troducing constraints enforcing position-based actuation, this time
considering only actuation constraints for elimination. It is neces-
sary to treat passive and actuation constraints separately, because
actuators are kinematically equivalent to fixed joints, and thus could
be indifferently be eliminated by this process otherwise.

C Computing Derivatives
In this appendix, we detail how to compute simulation derivatives
using the implicit function theorem, and how to use the adjoint
method to speed up computations.

C.1 Implicit Function Theorem
Non-Overconstrained Systems. For mechanical systems without

redundancies, we apply the implicit function theorem to Eq. 25 to
obtain the sensitivity of state y𝑛 at a given time step with respect to
parameters p (e.g. initial state, control inputs, or design variables):

𝜕y𝑛
𝜕p

= −
(
𝜕F
𝜕y𝑛

)−1
𝜕F
𝜕p

. (38)

This is a partial derivative, expressing only the effect of p through
a single simulation step. The full derivative dy𝑛

dp is obtained by the
chain rule

dy𝑛
dp

=
𝜕y𝑛
𝜕p
+ 𝜕y𝑛
𝜕y𝑝

dy𝑝
dp

. (39)

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

16 • Guirec Maloisel, Ruben Grandia, Christian Schumacher, Espen Knoop, and Moritz Bächer

The single-step sensitivity 𝜕y𝑛
𝜕y𝑝 w.r.t. the aggregate previous state can

be computed by setting p = y𝑝 in Eq. 38, noting that only the effect of
s𝑝 , ¤s𝑝 needs to be considered, as 𝝀𝑝 does not affect F. The derivative
dy𝑝
dp is obtained as a linear combination of dy(𝑘−1)

dp ,
dy(𝑘−2)

dp . . . , with
coefficients as per the chosen time integrator (BDF or Runge-Kutta).

Overconstrained Systems. For systems with redundant constraints,
Eqs. 38 and 39 must be applied to the reduced system without redun-
dant kinematic constraints and corresponding multipliers. Note that
this already provides the sensitivities ds𝑛

dp ,
d¤s𝑛
dp , as s𝑛, ¤s𝑛 are identical

for the full and reduced systems.
In applications where the sensitivities d𝝀𝑛

dp are also required, one
must differentiate through the weighted least-norm solution (Eq. 32).
Setting

G := E𝝀𝑛
W−1E𝝀𝑛

𝑇 , (40)
we obtain, using the analytical derivative of the pseudo-inverse and
removing terms that are always zero,

𝜕𝝀𝑛
𝜕x

= −W−1E𝝀𝑛

𝑇G+Ex (41)

−
(
I −W−1E𝝀𝑛

𝑇G+E𝝀𝑛

)
W−1E𝝀𝑛,x

𝑇G+E,

for x := p, s𝑛, ¤s𝑛 , or ¤s𝑝 , and where I is the identity matrix. Ex, E𝝀𝑛,x
𝑇

are evaluated with 𝝀 set to the multipliers computed for the reduced
system, while E𝝀𝑛

and E are evaluated with 𝝀 = 0.
The pseudo-inverse G+ becomes an inverse if there are no un-

constrained degrees of freedom. 𝜕𝝀𝑛

𝜕p is zero in many cases, but
we include these derivatives for completeness. The second term
in Eq. 41 is zero for x = ¤s𝑛, ¤s𝑝 . For x = s𝑛 , this term involves a
3rd-order tensor times a vector E𝝀𝑛,s𝑛

𝑇G+E which can be computed

by finding the second derivative 𝜕2 (E𝑇 v)
𝜕𝝀𝑛𝜕𝒔𝑛

for a fixed vector v, and
evaluating it for v = G+E.

We can then obtain d𝝀𝑛

dp through the chain rule:

d𝝀𝑛
dp

=
𝜕𝝀𝑛
𝜕p
+ 𝜕𝝀𝑛

𝜕s𝑛
ds𝑛
dp
+ 𝜕𝝀𝑛

𝜕¤s𝑛
d¤s𝑛
dp
+ 𝜕𝝀𝑛

𝜕¤s𝑝
d¤s𝑝
dp

(42)

C.2 Adjoint Method

When the full sensitivity matrix dy(𝑘)
dp is not needed by itself, but

only as part of a chain rule, we can use the adjoint method for
more efficient computations [Cao et al. 2002]. In particular, to solve
an optimization problem around a simulation sequence, we only
need to compute the gradient of an objective O with respect to
parameters p

dO
dp

=
𝜕O
𝜕p
+
∑︁
𝑘

dy(𝑘)

dp

𝑇
𝜕O

𝜕y(𝑘)
. (43)

For systems with non-redundant constraints, assuming temporarily
that 𝜕yn

𝜕yp = 0, we see from Eq. 38 that the term 𝑘 in the sum is

− 𝜕F
𝜕p

𝑇
(
𝜕F
𝜕y𝑛

)−𝑇
𝜕O
𝜕y𝑛

. (44)

While evaluating Eq. 38 requires the solution of a linear system with
as many right-hand sides as parameters p, we can instead compute

the adjoint vector ȳ𝑛 := −
(
𝜕F
𝜕y𝑛

)−𝑇
𝜕O
𝜕y𝑛 , solving the transposed

system with a single right-hand side, and compute in a second step
the product 𝜕F

𝜕p
𝑇 ȳ𝑛 .

Taking into account dependencies across consecutive steps, this
translates into Alg. 1 for systems with non-redundant constraints.
The algorithm uses the adjoint method to update gradients of the
objective with respect to states and parameters, from the end of
the sequence to the beginning, assuming a fixed initial state y(0) ,
which may optionally depend on p. The algorithm is written for a
BDF1 discretization (i.e. y𝑝 = y(𝑘−1) if y𝑛 = y(𝑘)); for higher-order
discretizations, the update of line 4 in Alg. 1 must be distributed
accordingly to g(𝑘−1)

y , g(𝑘−2)
y , . . . , with the same weights as for

computing the aggregate previous state y𝑝 .

Algorithm 1. Adjoint method for non-overconstrained systems.

1. Initialize gp := 𝜕O
𝜕p and g(𝑘)y := 𝜕O

𝜕y(𝑘)
for 𝑘 = 0, . . . , 𝑛.

2. For 𝑘 = 𝑛 to 1, do:

3. Compute the adjoint ȳ(𝑘) := − 𝜕F(𝑘)
𝜕y𝑛

−𝑇
g𝑘

4. Update g(𝑘−1)
y += 𝜕F(𝑘)

𝜕y𝑝

𝑇

ȳ(𝑘)

5. Update gp += 𝜕F(𝑘)
𝜕p

𝑇

ȳ(𝑘)

6. Update gp += 𝜕y(0)
𝜕p

𝑇

g(0)y

7. Output gp
(
= dO

dp

)
See Alg. 2 for the overconstrained case for the same assumptions

(fixed initial state, BDF1 discretization). While the standard adjoint
method cannot be applied to the weighted least-norm multipliers,
we can similarly ensure that only linear systems with a single right-
hand side are solved in Eq. 41, as sensitivities to the multipliers are
always multiplied with a column vector in the updates of lines 3–5
and 9 in Alg. 2. The adjoint vector computation on line 6 is done in
the context of the reduced system without redundant constraints or
multipliers.

D Semi-Implicit Euler
The semi-implicit method, a common choice in graphics and robot-
ics [Erez et al. 2015], solves for velocities first and uses the updated
velocities to integrate positions. It uses a state consisting of the body
pose, s =

[
c𝑇 q𝑇

]𝑇 , and twist u =
[
v𝑇 𝝎𝑇

]𝑇 .
The equilibrium equation written in terms of twist is

M ¤u + h − C𝑇𝜹𝒔𝝀 = 0, where (45)

M =

[
𝑀 · I 0

0 J(q)

]
, h =

[
−f

𝝎 × (J(q)𝝎) − 𝝉

]
, (46)

with the inertia expressed in global coordinates, J(q) = R(q)JrbR(q)𝑇 .
The constraint derivative, C𝜹𝒔 = [C𝒄 ,C𝝓], is the derivative of the

constraints w.r.t. the center of mass position and the incremental
body orientation parameterized by a rotation vector, 𝝓. The ori-
entation derivative is therefore related to the derivative w.r.t. the
quaternion via

C𝝓 = Cq
𝜕𝝓

𝜕q
=

1
2
CqG𝑇 (q), (47)

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

A Versatile Quaternion-based Constrained Rigid Body Dynamics • 17

Algorithm 2. Adjoint method for overconstrained systems.

1. Initialize gp := 𝜕O
𝜕p

and

g(𝑘)s := 𝜕O

𝜕s(𝑘)
g(𝑘)¤s := 𝜕O

𝜕¤s(𝑘)
g(𝑘)
𝝀

:= 𝜕O
𝜕𝝀 (𝑘)

for 𝑘 = 0, . . . , 𝑛.

2. For 𝑘 = 𝑛 to 1, do:

3. Update g(𝑘)s += 𝜕𝝀 (𝑘)
𝜕s(𝑘)

𝑇

g(𝑘)
𝝀

4. Update g(𝑘)¤s += 𝜕𝝀 (𝑘)
𝜕¤s(𝑘)

𝑇

g(𝑘)
𝝀

5. Update g(𝑘−1)
¤s += 𝜕𝝀 (𝑘)

𝜕¤s(𝑘−1)
𝑇

g(𝑘)
𝝀

6. Compute the adjoint ȳ(𝑘) := − 𝜕F(𝑘)
𝜕y𝑛

−𝑇

g(𝑘)s

g(𝑘)¤s
0

7. Update g(𝑘−1)

s += 𝜕F(𝑘)
𝜕s𝑝

𝑇

ȳ(𝑘)

8. Update g(𝑘−1)
¤s += 𝜕F(𝑘)

𝜕¤s𝑝

𝑇

ȳ(𝑘)

9. Update gp += 𝜕F(𝑘)
𝜕p

𝑇

ȳ(𝑘) + 𝜕𝝀 (𝑘)
𝜕p

𝑇

g(𝑘)
𝝀

10. Update gp += 𝜕y(0)
𝜕p

𝑇

g(0)y

11. Output gp
(
= dO

dp

)
analogous to the relationship between the angular velocity and the
time derivative of the quaternion (property 10 in Tab. 1). The time

derivative of the constraints can be written as
¤C = C𝜹𝒔u + C𝜽

¤𝜽 , (48)

which is linear in the body twist. The second term accounts for
changes in the control parameters.
Since enforcing constraint velocities to be zero leads to numer-

ical drift, the velocity constraint is stabilized through Baumgarte-
stabilization, with coefficient 𝛼 ∈ [0, 1]

¤C + 𝛼

Δ𝑡
C = 0. (49)

Then, by substituting time derivatives with finite differences, and
after multiplying the equilibrium equations by Δ𝑡 , the following
linear system is obtained[

M C𝑇
𝜹𝒔

C𝜹𝒔 0

] [
u(𝑘)

−Δ𝑡𝝀 (𝑘)
]
=

[
Mu(𝑘−1) − Δ𝑡h

−C𝜽
(𝜽 (𝑘)−𝜽 (𝑘−1))

Δ𝑡 − 𝛼
Δ𝑡 C

]
, (50)

which simultaneously enforces the velocity constraints and the dis-
cretized equilibrium equations. Note that dynamics and constraint
terms in these equations are evaluated at time 𝑘 − 1. Solving this lin-
ear system yields the updated twist and constraint forces. Afterward,
the body pose is integrated according to

c(𝑘) = c(𝑘−1) + Δ𝑡v(𝑘) , (51)

q(𝑘) = exp
(
Δ𝑡𝝎 (𝑘)

)
q(𝑘−1) , (52)

where the exponential map is used to convert the rotation vector
Δ𝑡𝝎 to the corresponding quaternion.

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

	Abstract
	1 Introduction
	2 Related Work
	3 A Quaternion-based Rigid Body Dynamics
	4 Incorporating Constraints
	5 Implicitly Integrating Constrained Dynamics
	5.1 Backward Differentiation Formula (BDF)
	5.2 Implicit Runge-Kutta Methods

	6 Solving the Algebraic Equations
	6.1 System Conditioning for Small Time Steps
	6.2 Overconstrained Systems
	6.3 Fully-Constrained Systems

	7 Computing Derivatives
	8 Results
	9 Conclusions
	9.1 Limitations and Future Work

	References
	A Runge-Kutta Parameters
	B Redundant Constraints Analysis
	C Computing Derivatives
	C.1 Implicit Function Theorem
	C.2 Adjoint Method

	D Semi-Implicit Euler

