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Abstract—Magnetoquasistatic position tracking has been
shown to be an excellent technique to measure distances between
an emitting and receiving loop for distances up to 50 m along a
direction perpendicular to the surface normal of the loops [1].
For short distances from the emitting loop (i.e., less than about
ten loop radii) there is an error in the estimated distance. In
this paper, we examine the cause of this error and show that
a significant portion is due to the simplification of the emitting
loop as a simple magnetic dipole. By including a more accurate
expression of the source field, errors can be significantly reduced.
We show that the first correction term results in a reduction in
rms and peak distance estimation error of 12.51 cm (54.44 %)
and 11.27 cm (44.72 %), respectively, for distances less than 1.5δ,
where δ is the skin depth.

Index Terms—Electromagnetic fields, magnetoquasistatics, ra-
dio tracking, radio position measurement.

I. INTRODUCTION
Wireless position tracking is an important technology for

a wide array of applications such as navigation and asset-
tracking [2], [3]. Despite numerous advances, current systems
suffer reduced performance in non-line-of-sight (NLoS) en-
vironments [2] and when in proximity to lossy objects such
as the human body. Recently, a position tracking technique
using magnetoquasistatic fields has been proposed and exper-
imentally demonstrated [1]. This approach allows for NLoS
position tracking in a wide range of environments since many
obstructions can be modeled as non-magnetic dielectrics, e.g.
the human body, that do not significantly perturb the fields.
In this approach, a magnetoquasistatic field is generated by
exciting an emitting loop with a sinusoidal signal source
and detected by a receiving loop with known position and
orientation (see Fig. 1). The measured voltage at the terminal
of the receiving loop is a function of the distance between
the emitting and receiving loops. By inverting the theoretical
expression for field measured by the receiving antenna, the
distance can be determined [1].
Unfortunately, many position tracking applications are not

in free space, but occur on or near a conducting medium, such
as the earth’s surface. The presence of a conducting region
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Fig. 1. Coupling between an emitting loop at the origin of a spherical
coordinate system and a receiving loop. Both loops reside on the y-z plane
and have surface normals parallel to the x-y plane.
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Fig. 2. Comparison of estimated distance error from inverting the theoretical
expressions for complex image theory, classical image theory, and free space
theory [using dipole fields for m = 0, see (2)]. The estimated distance error
is found by the difference between the optimal solution of distance y and the
measured distance.

significantly modifies the fields measured by the receiving loop
since the emitting loop not only directly produces the fields
seen by the receiver, but also induces currents in the conducting
region that produce secondary fields, which are also seen by
the receiver. Several techniques exist for correcting for the
conductive region’s affect, such as classical image theory or, as
was demonstrated recently, complex image theory [1]. Figure
2 compares the accuracy of these methods with experimental
measurements (see Sec. IV), where the loops are modeled
as infinitesimal dipoles. It can be clearly seen that complex
image theory provides increased accuracy over the free space
and classical image theory models. While complex image
theory does provide very good accuracy at large distances (>
5 skin depths, δ), Fig. 2 shows that these errors increase at
short distances. In this paper, we examine the validity of the
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infinitesimal dipole approximation to understand the origin of
these errors and how they can be reduced.

II. COMPLEX IMAGE THEORY
We begin by briefly reviewing the main concepts of complex

image theory to lay the foundation for our measurements, cal-
culations, and corrections for short range distance estimation.
The fields generated by an arbitrary source at z = h in the
presence of earth (z ≤ 0), shown two-dimensionally in Fig.
3, are a function of the fields from the source, its image
at a complex depth beneath the ground (referred to as the
complex image), and a summation of correction terms [4].
The correction terms are increasingly negligible at distances
greater than a skin depth from the classical image, i.e., when
R0 > δ, where R0 is the distance from the classical image of
the source. The magnetic induction is [4]

"Bp(x, y, z) ≈ "Bs
p(x, y, z) + cp

"Bi
p(x, y, z), (1)

where the first and second terms are due to the source
and complex image, respectively. The subscript p = ||,⊥
indicates the components parallel and perpendicular to the
ground, respectively; the superscripts s and i indicate the
source and the complex image, respectively; and c|| = 1
and c⊥ = −1. The magnetic induction of the source and
complex image in Fig. 3 are "Bs(x, y, z) = "Bl(x, y, z−h) and
"Bi(x, y, z) = "Bl(x, y,−z − h − α), where "Bl(x, y, z) is the
magnetic induction of the emitting loop at the origin expressed
in cartesian coordinates, α = δ(1− j), δ = 1/

√
πfµ0σ is the

skin depth, σ is the ground conductivity, µ0 is the permeability
of free space, and f is the frequency. For the specific two-
dimensional case in Fig. 3, only the Bφ components (or in
cartesian coordinates, the Bx components) are of concern.

III. COUPLING AND FIELDS OF A LOOP
We now examine more closely the fields generated by an

emitting loop antenna and the signal induced on a receiving
loop antenna, Fig. 1 and 3. In our model, we simplify our
system by assuming that one loop is large and one is small, i.e.
the distance y in Fig. 3 is > 10 radii of the small loop but < 5
radii of the large loop. This allows us calculate the exact fields
for the large loop only and assume the small loop has a uniform
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Fig. 3. The y-z plane of Fig. 1 showing image locations for magnetoqua-
sistatic fields generated by a source above a conducting earth [1].

field over its cross section. Due to the reciprocity of the system
and the fact that distance is an absolute measurement, one
could consider a large emitting loop and a small receiving
loop or visa versa. We choose a large emitting loop and small
receiving loop for our calculations to enable the use of existing
exact expressions for the magnetic field of a finite current
loop, and avoid the integration of a non-uniform field over
the receiving loop.
The coupling between two loops, vertically situated in the

y-z plane, Fig. 1, can be described using Faraday’s law and
the fields of the loop. The voltage generated at the terminals
of a receiving, electrically-small, single-loop coil (assuming
time-harmonic fields), is expressed as V = −jωar(n̂ · "B),
where ω = 2πf , f is the oscillation frequency, ar is the area
of the receiving loop, and "B is the magnetic induction of the
emitting loop [5]:

Br =
µ0Il
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where I is the current in the emitting loop, l is the radius of the
emitting loop, r is the distance from the center of the emitting
loop to the point of observation, φ is the angle of the loop
makes from the x-axis, and P is the Legendre polynomial.
Eq. (2) is valid for r > l. For the geometry shown in Fig. 1,
Br is parallel with the loop, and as a result, does not induce
any voltage; only Bφ induces a voltage in the receiving loop
and must be considered in (2). For r >> l, only the m = 0
term is important, and the fields are that of a magnetic dipole
as used in [1]. Figure 4a is a plot of the calculated power
detected at the receiving loop for distances of up to five radii
(l) in the y direction (I = 1 A, l = 1 m, ar = 1 m2, f =
387 kHz, 50 Ω impedance). Figure 4b is a plot of the change in
power contributed by each additional term in (2). The change
in power is increasingly negligible for higher order terms and
greater distances. At smaller distances (< 3 radii) the second
and higher order terms represent a noticeable correction.

IV. MEASUREMENTS AND ERROR REDUCTION
To determine the distance error at short ranges, we compared

the theoretical induced signal at the receiving loop with the
experimentally measured signal over a range of distances
using the setup in Fig. 3 [1]. In our experiment, we used a
small emitting loop and a large receiving loop, which is the
reverse of our calculations. This was done to take advantage
of a pre-existing test-setup. As mentioned previously, due
to reciprocity, the distance measured in the experiment is
equivalent to the distance calculated in the previous section.
The center height of the emitting and receiving loops,

respectively, were h = 0.84 m and z = 1.75 m. The emitting
loop was constructed using 45 turns of 34 AWG copper wire
with a diameter of 16.5 cm and was driven at 387 kHz. The
receiving loop was an active receiving loop (model LFL-1010
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Fig. 4. Received power at the terminal of the receiving loop calculated for
the coupling of the loops with a direction perpendicular to the surface normal
of the loops, where I = 1 A, l = 1 m, ar = 1 m2, frequency of 387 kHz,
and an impedance of 50 Ω is assumed.

from Wellbrook Communications) with a diameter of 1 m. A
block diagram of the measurement system is shown in Fig.
5. A signal generator (E4433B Agilent), amplifier (ZFL-500+
MiniCircuits), and balun (ADT1-6AT-1 MiniCircuits) were
used to drive the emitting loop. A spectrum analyzer (8593E
Agilent) was used to measure the voltage at the terminals of
the active receiving loop.
For the experimental geometry, the voltage at the terminals

of the loop is expressed as V = −jωar(n̂ ·( "B||+ "B⊥)), where
"B|| and "B⊥ are defined in (1), and the magnetic induction
of the larger loop is that in (2). For the setup depicted in
Fig. 3, the only unknown variable is the distance y, where
r2 = y2 + (z − h)2 and r = Rs.
To compare the theoretical estimation to measured results,

we need to calibrate our experimental system using a known
distance. We chose a distance that is sufficiently far to consider
both loops as magnetic dipoles. We placed the receiver 23.87 m
from the emitting loop and measured the received power. We
then calculated the theoretical power using complex image
theory. The ratio of the measured and calculated power was
used as a gain calibration in our system. All measurements
used that same gain calibration constant as the antennas were
moved from y =25 m to y =1 m.
Figure 6a is a plot of the estimated distance error, defined

as the difference between the distance calculated using com-

balunamplifierAC emitting loop active receiving loop
spectrum
analyzer

Fig. 5. Block diagram of the experimental measurement system [1].

plex image theory and the measured distance, for the simple
dipole approximation and the first two additional terms in (2)
(m = 0, 1, 2). Figure 6b is a plot of the rms and peak position
error as a function of number of the additional loop terms,
for distances y ≤ 1.5δ, shown by the gray box in Fig 6a.
The lowest-order additional loop term (m = 1) provides an
rms and peak distance estimation error reduction of 12.51 cm
(54.44 %) and 11.27 cm (44.72 %), respectively. The results
show that, for short distances (i.e., less than about ten loop
radii), the higher order terms of the complete field equations
in (2) must be considered for accuracy, instead of the magnetic
dipole approximation used in Fig. 2. For the measurements,
this corresponds to approximate distances of y ≤ 1.5δ.

V. CONCLUSIONS
The use of magnetoquasistatic fields analyzed with complex

image theory enables long-range distance tracking [1]. At
short distances (y ≤ 1.5δ), the lowest order additional term
to the fields of a magnetic dipole provide an rms and peak
distance estimation error reduction of 12.51 cm and 11.27 cm,
respectively. This corresponds to an rms and peak distance
estimation error percentage reduction of 54.44 % and 44.72 %,
respectively.
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Fig. 6. Comparison of: (a) estimated distance error from inverting the
theoretical expressions using the loop terms (m = 0, 1, 2). (b) rms distance
error reduction using the additional loop terms, for distances y ≤ 1.5δ. The
lowest-order additional loop term (m = 1) provides an rms and peak distance
estimation error reduction of 12.51 cm (54.44 %) and 11.27 cm (44.72 %),
respectively.


