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Objectives

Fig. 1. Our method uses multi-objective reinforcement learning to enable on-the-fly tuning of reward weights post-training, which can be used to transfer
challenging motions onto physical robots. The bar plots show the tuned weights of the individual reward terms at different points in time:

, lower body joint angles, foot joint angles,

Reinforcement learning (RL) has significantly advanced the control of physics-
based and robotic characters that track kinematic reference motion. However,
methods typically rely on a weighted sum of conflicting reward functions,
requiring extensive tuning to achieve a desired behavior. Due to the com-
putational cost of RL, this iterative process is a tedious, time-intensive task.
Furthermore, for robotics applications, the weights need to be chosen such
that the policy performs well in the real world, despite inevitable sim-to-real
gaps. To address these challenges, we propose a multi-objective reinforce-
ment learning framework that trains a single policy conditioned on a set of
weights, spanning the Pareto front of reward trade-offs. Within this frame-
work, weights can be selected and tuned after training, significantly speeding
up iteration time. We demonstrate how this improved workflow can be used
to perform highly dynamic motions with a robot character. Moreover, we
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, root pose, root velocities, and smoothness.

explore how weight-conditioned policies can be leveraged in hierarchical
settings, using a high-level policy to dynamically select weights according to
the current task. We show that the multi-objective policy encodes a diverse
spectrum of behaviors, facilitating efficient adaptation to novel tasks.
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1 Introduction

Creating motion tracking controllers is a fundamental challenge
in physics-based character animation and robotics. The predomi-
nant approach trains controllers using reinforcement learning (RL),
where weighted sums of carefully-designed reward functions guide
the agent towards achieving a desired behavior.

A key challenge is that, due to possibly conflicting rewards (e.g.,
maximizing accuracy while minimizing energy), choosing the weights
is nontrivial. In practice, finding a set of weights that results in the
intended behavior often involves a trial-and-error approach. Be-
cause standard RL methods require setting these weights prior to
training, the required retraining makes this a time-intensive process.
Furthermore, in a setting where multiple motions are tracked by a
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single policy, motions with distinct styles or dynamics may benefit
from a different trade-off, which a single fixed set of weights cannot
provide.

The requirement for tuning weights is further exacerbated in
robotics applications, where a controller is trained in simulation,
but expected to perform well in the real world. The sim-to-real gap
poses additional, but unknown, requirements on the behavior, which
need to be navigated by selecting appropriate weights. For example,
smoothness terms typically need to be weighted much higher for
satisfactory results on real hardware compared to simulation.

To overcome these limitations, we propose Adaptive character
control through Multi-Objective Reinforcement learning (AMOR), a
method that leverages multi-objective RL (MORL) to train a control
policy conditioned on reward weights. Our method allows users
to set the weights after training and directly observe the adapted
behavior, without requiring retraining. Any iterative weight tuning
is therefore significantly accelerated.

Being able to adjust weights without retraining opens up exciting
opportunities. In this paper, we explore two ways to leverage the ca-
pabilities of AMOR. First, we manually tune the weights to achieve
the sim-to-real transfer of dynamic motions for a robotic character.
Second, we explore the use of AMOR in a hierarchical setting, where
a high-level policy (HLP) uses its adaptive capabilities to solve a
novel task. We observe that reward trade-offs may not only need
to vary across but also within skills. To automate this fine-grained
selection of reward weights, the HLP dynamically adjusts the re-
ward trade-offs. For training, we rely on a generator-discriminator
approach [Ho and Ermon 2016; Peng et al. 2021; Xu and Karamouzas
2021].

By enabling adjustments of reward trade-offs without retraining,
AMOR paves the way towards adaptive physics-based character
control. In summary, our contributions are:

o A novel context-conditioned MORL problem formulation that
enables the extraction of Pareto fronts conditioned on differ-
ent contexts, with a single policy.

e AMOR, a controller conditioned on reward weights and task
context, capable of zero-shot adaptation to desired trade-offs
among conflicting objectives.

e A hierarchical policy that leverages AMOR for fine-grained
real-time adjustments of reward weights, offering interpretabil-
ity of implicit rewards as a byproduct.

2 Related Work

Physics-based Character Control. Early work in character control
relied on carefully designed cost functions and optimization to syn-
thesize lifelike locomotion and diverse skills [Al Borno et al. 2013;
Coros et al. 2010; Hamal4inen et al. 2015; Hodgins et al. 1995; Lee
et al. 2010; Mordatch et al. 2010, 2012; Sharon and van de Panne
2005; Sok et al. 2007].

The growing availability of motion capture data gradually shifted
the field towards learning-based methods, where controllers learn
from human motion rather than relying on hand-crafted optimiza-
tion [Liu et al. 2015, 2012, 2010; Won et al. 2017]. Especially with
the development of efficient RL algorithms [Mnih et al. 2016, 2015;
Schulman et al. 2015a,b, 2017], neural network controllers gained
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traction through their ability to learn continuous motor policies
from data [Heess et al. 2017, 2015; Merel et al. 2019; Peng et al. 2018a,
2017; Torabi et al. 2018a], although balancing style, realism, and
robustness in reward design remains non-trivial.

While some methods have leveraged insights such as symmetry
and energy efficiency in locomotion [Yu et al. 2018], predominant
approaches define objectives that explicitly measure pose and ve-
locity tracking accuracy [Bergamin et al. 2019; Peng et al. 2017].
Although this has been shown to scale beyond locomotion [Peng
et al. 2018a,b], such methods have often attempted to craft a single
reward function for all motions, which has proven challenging and
consequently limited their applicability beyond a handful of motions
or specific motion styles.

Various ideas have been explored to scale tracking controllers;
combining expert policies [Merel et al. 2019, 2017, 2020; Peng et al.
2019; Won et al. 2020], incorporating future frames [Chentanez et al.
2018; Park et al. 2019], incrementally increasing motion complex-
ity [Luo et al. 2023; Wang et al. 2020], model-based RL [Fussell
et al. 2021; Yao et al. 2022], leveraging latent spaces [Gehring et al.
2023; Hasenclever et al. 2020; Serifi et al. 2024; Won et al. 2022;
Zhu et al. 2023], or the use of advanced transformer-based archi-
tectures [Tessler et al. 2024]. Despite this progress, these methods
continue to rely on fixed-weight reward design, which remains a
critical bottleneck.

Concurrently, another line of research has attempted to sidestep
handcrafted objectives by replacing explicit reward functions with
learned implicit rewards [Peng et al. 2021; Xu and Karamouzas 2021].
Instead of explicitly computing deviations, these methods utilize a
discriminator score, inspired by adversarial learning [Goodfellow
et al. 2014; Ho and Ermon 2016; Torabi et al. 2018b], to differenti-
ate between the reference and the controller-produced simulated
motion. While they automate aspects of reward construction, they
introduce training instabilities like mode collapse and require sig-
nificant compute. Moreover, they lose the interpretability of explicit
rewards and are usually used to design controllers that aim to embed
a repertoire of diverse skills into the policy rather than tracking
a specific reference motion well. Some limitations were improved
by follow-up work [Dou et al. 2023; Tang et al. 2024; Tessler et al.
2023], but challenges remain.

Recently, efforts have been made to bring physics-based con-
trollers to robots [Cheng et al. 2024; He et al. 2024; Serifi et al. 2024],
where reward design has proven even more challenging [Gu et al.
2025; Ha et al. 2024; Ibarz et al. 2021]. Potential sim-to-real gaps can
result in unexpected trade-offs, requiring an adjustment of reward
functions that, in turn, necessitates a retraining of the controller
from scratch.

Multi-Objective Reinforcement Learning (MORL). Multi-objective
optimization and Pareto front extraction have seen use in interactive
design exploration in graphics [Schulz et al. 2018]. In our work, we
highlight applications in RL and physics-based character control
instead.

MORL [Hayes et al. 2022] emerged as an extension of traditional
RL [Sutton and Barto 2018] to address problems involving multiple
conflicting objectives. Unlike standard RL, where a single policy is
trained, agents are tasked to learn a set of policies, each specializing
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to a different prioritization between the reward functions. Early
MORL work targeted the development of the underlying theory
and the training of small sets of Pareto-optimal policies in synthetic
environments [Roijers et al. 2013; Van Moffaert and Nowé 2014].

Recent MORL work can be divided into techniques that explicitly
maintain a population of policies [Felten et al. 2024; Xu et al. 2020],
and methods that learn a single preference-conditioned model that
encodes multiple policies [Alegre et al. 2023; Yang et al. 2019]. Our
work falls into the second category, which scales better with the
number of policies.

A few works have considered constrained MORL approaches for
physics-based character motion [Kim et al. 2024; Wang et al. 2020].
In Wang et al. [2020], tasks are formulated using multi-objective
reward functions. However, fixed weights and cost thresholds are
employed, limiting the versatility of the resulting controllers. More
recent work models tasks by dividing them into pre-specified stages,
defined by different rewards and cost functions [Kim et al. 2024].
However, this method requires an expert to manually specify the
cost thresholds and reward weights for each pre-specified stage
of a task. To employ multiple critics, Xu et al. [2023] use a MORL
formulation where different groups of body parts are treated as
independent tasks with their own value function. However, the
authors only learn a single policy on the Pareto front, assigning
fixed weights for all body groups. Our method, in contrast to the
aforementioned works, learns trade-offs that cover the entire space
of preferences.

Another setting related to MORL is the multi-task setting within
the successor features (SFs) framework [Barreto et al. 2019, 2017;
Dayan 1993]. In this line of work, the reward function is assumed
to be a linear combination of a set of (learned) features. Alegre et al.
[2022] showed connections between the MORL and SFs settings,
demonstrating that ideas from both fields could be combined. While
SF-based methods focus on the rapid adaptation to novel tasks, the
goal in MORL—and in this paper—is to learn a set of Pareto-optimal
solutions that capture all trade-offs between conflicting objectives.

3  AMOR Overview

Fig. 2 shows the structure of AMOR. At its core, it is an RL-based
controller that tracks a kinematic reference motion, similarly to
related work [Serifi et al. 2024]. The policy is trained to output
actions a; that maximize the reward of a simulated character, given
the current state of the character s;, and a context vector ¢; encoding
task-relevant information. Specifically, in our context, ¢; includes a
time-varying kinematic reference, and also a latent-space encoding
of a motion window that captures past and future targets.

The problem specification also includes a set of reward terms
r; that capture the policy performance. Particularly, we consider
a set of 7 rewards, including joint-space and task-space tracking,
velocity tracking, and smoothness. Instead of prescribing a fixed
set of reward weights, and giving the policy a scalar reward, we
maintain a vector of rewards and condition the policy on the reward
weights, so the policy becomes 7z (as|s, ¢z, W).

For each training episode and environment, we sample a set of
reward weights from a multi-dimensional simplex. Policy updates
are then computed using a multi-objective extension of the PPO

Motion-Context MOPPO

A T e

Fig. 2. AMOR Overview. AMOR optimizes for multiple objectives condi-
tioned on state, motion-context, and reward weights, where reward weights
are sampled from a multi-dimensional simplex. The environment provides a
vector of rewards, which are then used by a multi-objective PPO algorithm
together with the weights to update the policy.

yoows
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algorithm, which is also given this same weight vector. Once con-
verged, this results in a policy which can track arbitrary reference
motions under arbitrary weightings of different reward terms, al-
lowing for on-the-fly weight tuning post-training by either a user
or an algorithm.

4 Multi-Objective Reinforcement Learning

Before discussing AMOR and its HLP extension in more detail, we
provide background on multi-objective reinforcement and introduce
our algorithmic extensions.

4.1 Background

In standard RL [Sutton and Barto 2018], an agent interacts with its
environment by selecting actions a; based on the current state s;
following a policy 7(at|s;). This action leads to a transition to a new
state s;41 ~ p(-|st, a;) and yields a scalar reward r; = r(st, az, Sg41)-
The agent’s goal is to maximize the expected discounted return,

Dyl so~ do], (1)

t>0

J(m) =Bg, [V"(s0)] = Ex

where y € [0, 1) is the discount factor, V" (s) is the value function,
and dg an initial state distribution.

MORL [Hayes et al. 2022] extends this framework by providing
the agent with a vector-valued reward r; (s, az, st+1) € R™, where
each element represents a distinct (and potentially conflicting) ob-
jective. Instead of a scalar return, each policy is associated with
an expected vector return, J(7) = E, [2,20 Yire | so ~ do]. In con-
trast to standard RL, no single optimal solution exists; instead, the
goal of an agent is to identify a Pareto front, . We say a point J ()
is Pareto non-dominated if and only if there does not exist another
point J() such that J;(z’) > Ji(x),Vi and Ji(x') > Ji(r) for at
least one i € {1, ..., m}. In the context of continuous robotic control
tasks [Felten et al. 2023; Xu et al. 2020], the Pareto Front is typically
convex! and can be defined in terms of a linear dominance relation

F = {J(ﬂ) | Iws.t. J(xr) - w = (') ~W,V7l"}, (2)

where the elements w; in the reward weight vector w € A™ form
a convex combination, satisfying the requirements », w; = 1

Tn the MORL literature, the Pareto front under linear preferences is also known as the
convex coverage set (CCS)[Roijers et al. 2013].
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and w; > 0. Intuitively, each w induces a different scalar reward
ry = r(st, ar, Sp+1) - W. Due to the linearity of the expectation and
sum operations, it follows that

Zytrt-w

t>0

J(m) =Eg =E,

nyrt] w=J(m) W, ()

t>0

with the optimal solution J* = max, J(r) - w. The corresponding
policy 7* is therefore optimal for any trade-off w between the m
objectives.

4.2 Algorithmic Extensions

We extend the standard MORL framework by conditioning policies,
7 (at|st, ¢, W), and rewards, ry(sy, a, S¢+1, €¢), on an additional con-
text vector c; that encodes task-relevant information, making the
Pareto front also a function of the context. Given a context, each
w € A™ then induces a different Pareto-optimal policy within the
Pareto front.

To train sz, we introduce a multi-objective extension of the Prox-
imal Policy Optimization (PPO) algorithm [Schulman et al. 2017],
which we refer to as MOPPO. Instead of learning a scalar value
function V7 (s,c) = E, [tho virs |so =s,¢c0 = c], as done in tradi-
tional goal-conditioned RL, MOPPO learns a vector-valued function
conditioned on the reward weights w,

Z)/trt | so =s,c0 = C}, 4

t>0

V™(s,c,w) =E,

optimizing multiple objectives simultaneously. The multi-objective
policy gradient, V, [J() - w], used to update the policy,

Edﬂ'

Z(A”(st, ¢t ar) - w) Vo log m(az|ss, Ct,W)] , (5)

t>0

relies on a vector-valued advantage function A” (s, ¢t, a;). Here, d™
represents the discounted stationary distribution of states induced
by 7 and the environment dynamics, S¢+1, €z+1 ~ p(-|ss, ¢z, az). As
is common practice in PPO implementations [Andrychowicz et al.
2021], we employ generalized advantage estimation (GAE) and nor-
malize the scalarized advantage, A” - w, with its mean and standard
deviation over each mini-batch. Moreover, we employ the standard
PPO clipped loss function, but constructed based on Eq. (5).

To ensure coverage of the space of possible reward weights and
the Pareto front, we assign a different randomly-sampled weight
vector w ~ A™ to every episode. As a result, the agent’s replay buffer
stores experience transitions of the form (s, ¢;, as, Iz, St41, Cr4+1, W).

To sample weight vectors uniformly from the (m—1)-dimensional
simplex A™, we draw from a Dirichlet distribution with parameter
a=1

5 Training of AMOR Policy

To instantiate AMOR for character control tasks, we train a multi-
objective policy to track reference motions under multiple, poten-
tially conflicting objectives. This section details how we formu-
late the tracking problem, construct the motion context, define the
multi-objective reward, and incorporate the reward weights into
our policy.
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Motion Tracking Problem. We consider the standard problem of
tracking kinematic motion using a physically simulated character.
As in VMP [Serifi et al. 2024], we assume access to a dataset D of
motion clips consisting of a finite sequence of motion frames, m; =
(ht, 01, v+, 9z, Q. Pt Pr)- Here, h; is the height of the character’s
root relative to the ground, 6; is the orientation of the root in a
6D representation [Xiang and Li 2020; Zhou et al. 2019], and v; is
a 6D vector representing the root’s linear and angular velocities.
Moreover, q; is the angular position of the character’s joints and
qr their angular velocities. Finally, p; is a 9D vector that encodes
the poses of hands and feet relative to the root (3D position, 6D
orientation) and p; encodes the corresponding linear velocities. To
make the motion invariant to the global pose, we normalize frames
m; by expressing all orientations and velocities with respect to the
local heading frame of the root 6.

Our goal is to choose actions a; to match these reference poses
as closely as possible, subject to realistic physics constraints. How-
ever, perfect tracking of reference motion in the dataset is generally
infeasible. Largely due to an ill-posed retargeting from human mo-
cap to our characters, there are artifacts such as imbalance, inter-
penetrations with the ground, or foot sliding that are clearly visible
to the naked eye. Thus, certain aspects of a kinematic reference
may need to be prioritized to maintain dynamic feasibility, creating
conflicting objectives.

Motion Context. To condition the policy on the task, we define
the motion context ¢y = (my,z;), where we add a latent vector
z; that represents a compressed motion window of frames M; =
{m;_yy, ..., msw }, centered at t and of size 2W + 1, alongside the
current motion frame. For training of this latent representation, we
follow VMP [Serifi et al. 2024] and train a Variation Autoencoder
(VAE) that maps motion windows to latent codes z; = e(M;). This
latent representation captures local motion patterns around the
frame t. We refer to [Serifi et al. 2024] for details on the loss function,
the training of the VAE, and the normalization of motion windows.

Multi-Objective Tracking Reward. We use a multi-objective reward
vector r € R™ with m = 7 motion tracking objectives

r(ss, az, S¢41,€¢) = [r;lp, V}O, eret, Vfbs, riom, r}'el, r?mOOth]T- (6)

The reward rP tracks the character’s upper joint positions and its
height, r'° the lower joint positions, rf¢¢t the positions of the ankle
joints, and r™* the position and orientation of the end-effectors.
Reward r™°t tracks the orientation of the root, r¢! the linear and
angular velocities of the joints and root, and r*™°th penalizes high
action rates and torques to mitigate vibrations and smoothen the
motion.

Since the rewards may vary significantly in magnitude, directly
summing them up using linear weights could lead to poor problem
conditioning. We therefore assign a prior scaling to each reward
term, informed by [Serifi et al. 2024].

The individual reward terms and their prior scaling factors are
detailed in Tab. 1. All objectives include a constant survival bonus,
c@live that rewards the agent for not reaching a terminal state (e.g.,
falling to the ground). This is important for training to prevent the
policy from terminating as quickly as possible to avoid any negative
accumulation of reward.
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Table 1. Multi-Objective Components. The individual terms and scales
of each of the seven objectives. Scaling values are reported separately for
the humanoid and the robot. qPlolfeet denote the DoFs for the upper body,
lower body, and feet, respectively. pPosI’t represent the positional and rota-
tional parts of the rigid body poses, respectively. R : R — SO(3) c R3*3
represents the transformation that maps quaternions or 6D rotation repre-
sentations to their corresponding rotation matrix in SO(3). vinlang regpec-
tively denote the linear and angular velocity of the root. T denotes joint
torques and { joint accelerations. Target values are denoted by (*).

Scale
Objective  Term(s) Humanoid Robot
aup (|2

r'P lq*? — q"P |13 1.0 7.0
rlo llq® - g2 1.0 7.0
rfeet queet _ qfeetllg 1.0 7.0
X [IpPo —tf)p"sl\ﬁ - 1.0 1.0
s IR™) - R () 2 10 10
lp - plI3 1.0 1.0

rreot IR(8) = R(O)13 10 10
el [|viin — ytin |2 1.0 2.0
[lvene — v |2 1.0 2.0

~l=l 1.0-10°  1.0-1074

ysmooth —lla; —a;-1 ”5 ) 1.0-107° 1.5
—llar — 2a,-1 + a2 |12 1.0-107° 0.45

~ Nl 1.0-107%  2.5.107

Weight Conditioning. In contrast to traditional motion tracking
policies, AMOR is additionally conditioned on reward weight vec-
tors w. For each environment and each episode, we sample weights
in the simplex A™ and keep them fixed while the motion context
moves forward in time but also jumps to new motions. After col-
lecting enough samples, gradient steps are performed to update the
policy according to the MOPPO objective (Eq. 5).

6 Hierarchical Weight Adjustment

AMOR’s policy, described in the previous section, results in different
behavior, dependent on the input weight vector w. This allows the
user to flexibly select the desired trade-offs in a zero-shot manner,
without having to train different agents from scratch. In this sec-
tion, we alternatively propose a high-level policy (HLP), T(w¢|s;, c¢),
which dynamically selects weights w; during execution, enabling
the agent to adapt its behavior to the current context and dynamic
state based on a different, high-level reward. This hierarchical ap-
proach uses AMOR with frozen parameters as its low-level policy
and is illustrated in Fig. 3. We train the HLP using standard PPO,
with the addition of a softmax activation function in the actor net-
work’s final layer to ensure it outputs reward weights in the simplex,
ie., w; € A™. We note that training the HLP is significantly faster
than training AMOR, as is typically the case in hierarchical meth-
ods [Barreto et al. 2019].

Implicit Reward. The HLP is trained on a reward function, which is
not required to be part of the original reward terms. To demonstrate
this, we use an implicit reward, as proposed by recent work [Peng
et al. 2021; Tessler et al. 2023]: a discriminator tries to distinguish
simulated motions from the kinematic reference motions, and a

Motion-Context PPO with Discriminator

HLP

Fig. 3. High-Level Policy Overview. We learn a high-level policy (HLP)
that generates reward weights for a pretrained AMOR based on the cur-
rent motion context. In this stage, a discriminator is trained to distinguish
between reference and simulated motions, with its output serving as an
implicit reward for the HLP.

reward is computed based on accuracy. The hierarchical weight
adjustment method allows the expansion of AMOR to optimize for
such new rewards.

We define O; = {o;_y,...,0;} as a window of size V, contain-
ing past observations o; = (6, vy, q;). Let D(O¢|z;) be a discrim-
inator whose goal is to distinguish between dataset transitions
0; ~ dM(0Oy, z;) and transitions resulting from following a given
policy, O; ~ d” (O, z), where dM(0;,z;) and d” (Oy, z;) are state
transition distributions of the reference motion and the policy, re-
spectively. The discriminator-based reward function used to train
the high-level policy is then

rP(04,2¢) = —log(1 - D(O42z;)). (7)

Intuitively, this reward function rewards the agent for performing
transitions that appear indistinguishable from the real motion tran-
sitions in the dataset 9. By maximizing this reward function, 7
allows the agent to select the reward weights w; that lead to more
realistic motion transitions for each s; and motion context c;.

We follow Tessler et al. [2023] and also condition the discrimi-
nator on the latent motion vector z; to prevent mode collapse. The
discriminator is trained via the loss function

LP = —Bp,cp [LM+ L7 + BPLEP | 7, = e(My) |, (®)
with terms
IM=E M (Oy.20) 108 D(O¢zs)
L” = Edﬂ(ot’zt) lOg(l - D(OHZ[))
8P — . N 2
L =Bm (0,20 VPP lg=0,,2 I
which has shown to minimize the Jensen-Shannon divergence be-
tween dM(0;,2;) and d”(Oy,z;) [Nowozin et al. 2016]. L8P is a
gradient penalty, scaled by coefficient ¢8P, used to penalize nonzero
gradients on samples from the dataset. This has been shown to
improve training stability [Mescheder et al. 2018].
Note that attempts to directly use the discriminator-based reward
in the low-level policy led to mode collapse; the presented two-stage

approach seems better suited for navigating the complex landscapes
created by such higher-level rewards.

Reward Interpretability. After training the HLP on the high-level
reward, we can inspect the weights it selects. This shows which
combination of low-level reward terms correspond to a behavior

SIGGRAPH Conference Papers 25, August 10-14, 2025, Vancouver, BC, Canada.



6 + Lucas N. Alegre, Agon Serifi, Ruben Grandia, David Miiller, Espen Knoop, and Moritz Bacher

that maximizes the implicit reward. The combination of the HLP and
AMOR thus allows us to interpret what the discriminator is looking
for at a given state and context. For additional artistic control, a
user could also edit the weights returned by the HLP.

7 Evaluation and Results

In this section, we evaluate our method’s capabilities for the prob-
lem of motion tracking of physically-based characters and robots.
In particular, we aim to validate that (i) AMOR is able to approx-
imate the Pareto front of tracking behavior for different motions
with a single policy, allowing for behavior tuning without retrain-
ing; (ii) the relative importance between tracking objectives plays
a significant role in the resulting tracking behavior; and (iii) by
employing our high-level policy, 7(w|st, ¢t), we can dynamically
prioritize different objectives resulting in more flexible and robust
tracking behavior.

7.1 Experimental Setting

Characters. We perform our experiments on a standard humanoid
with 36 degrees of freedom (DoFs) and a bipedal robot with 20 DoFs.
The characters are torque-controlled using a proportional-derivative
(PD) controller with realistic actuator models for the robot [Grandia
et al. 2024] and virtual actuators for the humanoid [Serifi et al. 2024].

Dataset. The dataset consists of motion capture data from a simple
mocap setup (CMU [2001], 1870 clips, 8.5 h) as well as a smaller high-
quality dataset of processed motions (Reallusion [2023], 214 clips,
0.5h).

RL. We employ multi-layer perceptron (MLP) neural networks
with ELU activations [Clevert et al. 2016] to model the policies and
value functions. We use 4 layers with 1024 units to model AMOR 7
and the critic, and a 3-layer model for the high-level policy 7. Both
policies operate at 50 Hz. We normalize the observations using a run-
ning mean, as typically done when using PPO [Andrychowicz et al.
2021]. Our simulations are conducted using the GPU-accelerated
Isaac Gym [Makoviychuk et al. 2021] simulator, running 8192 envi-
ronment instances in parallel at 250 Hz on a single RTX 4090 GPU.
We train AMOR for 300k iterations (approximately 5 days) for each
character.

7.2 AMOR

Pareto Front. First, we show a visualization of the Pareto front
identified by AMOR’s policy, when given different motions to track.
In particular, we evaluate F = {J(z(-,w)) | w ~ A™} by sampling
8192 weight vectors from A™ and averaging over 15 episodic returns.
Fig. 4 displays the Pareto fronts obtained by tracking three different
motions (Idle, Walking, Dancing) on the humanoid by following
7. Because each point J(7r) on the Pareto front is a 7-dimensional
vector, we depict pairwise comparisons between the unscaled cumu-
lative reward corresponding to each objective. All of the 8192 points
are Pareto non-dominated w.r.t. all objectives, and the points with a
black border are points that are additionally Pareto non-dominated
w.r.t. the two objectives in the corresponding figure panel. We also
depict with crosses the mean return obtained by following 7 with
equal reward weights, w; = 1/m. Although the reward terms share
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Fig. 4. Pareto Fronts (PFs). Visualization of selected PFs generated by
tracking three distinct motion types—Idle, Walking, and Dancing—using the
humanoid controlled by AMOR’s policy . x-markers indicate performance
under equal weight configuration, corresponding to a fixed-reward policy.

the overall goal of achieving better motion tracking, they are in-
herently conflicting. For example, for the dancing motion in Fig. 4,
we observe that prioritizing smoothness conflicts with lower-body
tracking. Precisely tracking more dynamic reference motions, which
are generally less feasible, introduces jitter. This trade-off is also
visible on the physical system, see Fig. 7. Even seemingly unrelated
objectives, such as upper- and lower-body tracking, can conflict
because the coordination between the body parts is not physically
accurate. We note that different motions induce different Pareto
fronts with varying degrees of conflict between objectives. This
suggests that there is indeed value in not relying on fixed weights
when tracking multiple motions.

Training Comparison. We com- 10
pare the total reward obtained 9
during training between AMOR ER 4.
trained with MOPPO and a pol- E 2 MOPPO [fixed)
icy trained with PPO, using the (2)1 | | | T
fixed average weights, w; = 1/m. 0 25 50 75 100

For MOPPO, we evaluate the re- Step [x1000]

ward using both randomly sampled weights and the fixed weights
used in PPO training. In all cases, we report the sum of equally
weighted reward terms. As shown in the inset figure, the training
follows a similar trend, with PPO converging faster. This faster con-
vergence is expected, as PPO optimizes for a single fixed reward
weight combination, while MOPPO must dynamically adapt its be-
havior to varying weights covering the entire simplex A™, making
it a harder learning task. We hypothesize that the gap in total re-
ward between PPO and MOPPO would further reduce after both
algorithms fully converge. Notably, MOPPO’s reward evaluated for
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the average weights is similar to the average reward across the
randomized weights.

Behavior Adaptation. To validate that changes in weights indeed
lead to a change in behavior, we manually change the weights for the
humanoid while performing a dancing motion. The results are best
seen in the supplementary video. Fig. 5 highlights keyframes of the
experiment. It can be seen that with the increased smoothness term,
a smoother motion is obtained at the expense of tracking perfor-
mance, as would be expected. We further evaluate this observation
on the full dataset; Fig. 6 shows the distribution of the unweighted
cumulative reward for smoothness when increasing the correspond-
ing reward weight. The change in the distribution shows that the
policy can successfully adapt its behavior to prioritize smoothness.

Robot. We use AMOR on a 20-DoF bipedal robot (Fig. 1), and
compare a uniform weight distribution against manually-tuned
weights on two challenging examples.

Upper
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Fig. 5. Weight Influence. (Top) Kinematic reference. (Middle) Visual per-
formance when prioritizing tracking reward weights. (Bottom) Visual per-
formance when prioritizing smoothness reward terms.
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Fig. 6. Prioritizing Objectives. Distributions of the unweighted cumula-
tive smoothness reward for three distinct weight values, each evaluated on
32768 episodes.
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Fig. 7. Weight Tuning. The left column shows the measured DoF [°],
and the right column shows the measured DoF velocities [°/s] for the
three pitch joints of the robot’s right leg during the dance motion in the
supplementary video. The purple curve shows the measurements of the
simulated robot and the blue curve of the real robot with uniform weight
distribution. Through tuning the weights and increasing the smoothness
objective, the sim-to-real gap and undesired jitter can be reduced, as shown
with the green curve. See also the supporting video.

We first consider a stationary dancing motion, and compare the
simulated robot to the physical one. As seen in Fig. 7, the real
robot exhibits significantly higher jitter in the joint positions and
velocities. By increasing the smoothness objective, we can reduce
this jitter, and thereby also reduce the sim-to-real gap as shown
in the figure. This experiment is highlighted in the supplementary
video and best appreciated by focusing on the actuator sound.

In the second example, a double pirouette motion, shown in Fig. 1
and the accompanying video, we demonstrate that tuning the reward
weights on the real system enables the robot to perform physically
demanding motions beyond the capabilities of the state-of-the-art
fixed-weight VMP controller. To achieve this motion, we experimen-
tally determined the impact of each reward term through on-the-fly
weight adjustments directly on the robot.

We found that time-varying weights were required, to address
particular challenges of different parts of the motion. For example,
a high velocity weight was required during the initial part of the
motion, to build up enough rotational speed for a stable pirouette.
Conversely, a higher smoothing weight was required towards the
end of the sequence, for a smoother transition out of the pirouette.

Tuning the weights for this dynamic motion took approximately 1
day of experimentation. Compared to the 5 days it takes to train the
RL policy, it is clear that tuning with retraining would be infeasible.

7.3 High-Level Policy

Hierarchical Weight Adjustment. We now evaluate the behavior of
the proposed HLP, in particular studying how the weights returned
by the HLP vary over time and with the motion being performed. In
Fig. 8, we show how the reward weights produced by 7(w|s;, ct)
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Fig. 9. Discriminator Window Size Comparison between 30-frame and
discriminator window lengths lead to different reward weights.

evolve as the humanoid transitions through walking, spinning, per-
forming an upper-body motion, and standing still.

During walking (red background), the HLP balances the feet
and lower body coordination combined with smoothing to feather
the steps of the character. The activations of the velocity term are
generally short and intermittent; and can for example be seen to
align with the start of a spinning motion (yellow window). The
motion in the green window features two high punches in the
air; this can be seen to correlate with two spikes in the tracking
weights (blue curves). During the final part of the motion (purple
background) the reference motion remains at rest; this can be seen
to activate the velocity weight.

Interestingly, we observe that changing the window size V of the
observations for the discrimination produces different behaviors.
Fig. 9 shows a comparison between the 30-frame discriminator and
a 2-frame discriminator. While it is difficult to draw conclusions, we
can observe that the 2-frame version weighs the velocity term more
heavily, while the 30-frame version instead places higher weights
on tracking the lower body and feet.
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discriminator rewards on the HLP for the first interval of Fig. 8. The different

Motion Tracking Performance. We evaluate the HLP by comparing
humanoid performance in simulation using HLP’s weight predic-
tions against equally-balanced fixed weights. First, we measure the
mean absolute error (MAE) of joint positions relative to a kine-
matic reference, using 80’000 randomly-sampled 30-second motion
episodes. For shorter motions, additional segments are appended
to complete the episode. Second, we assess the logits of a discrim-
inator D(O¢|z;) trained on 32M 30-frame windows Oy collected
from simulations with HLP, fixed weights, and dataset transitions.
The discriminator, trained to distinguish between simulated and
dataset transitions, is evaluated on 8M windows. Note that this dis-
criminator is trained separately for this evaluation, and is not the
discriminator used to train the HLP. Results in Tab. 2 show signifi-
cant improvements in both explicit MAE and implicit assessment
through logits when using HLP over fixed weights. This highlights
that the hierarchical approach is indeed able to leverage the adapt-
ability of the AMOR policy.
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Table 2. Motion Tracking Performance. Comparison of AMOR’s perfor-
mance on the simulated humanoid using HLP against equally balanced
fixed weights is measured both explicitly, using the mean absolute error
(MAE) of the character’s joint pose in degrees, and implicitly, through the
logits of a discriminator.

Weights MAE | Logits T
Uniform Weights 10.02 —18.02
HLP Prediction 9.55 —15.48

8 Conclusions

We have introduced AMOR, a policy conditioned on context and
a linear combination of reward weights trained with MORL. We
have shown that a multi-objective approach scales to the problem
complexity found in motion tracking for physics-based characters
and robots. By leveraging context conditioning, AMOR can suc-
cessfully track a wide variety of motions under different reward
weights. AMOR allows for on-the-fly adjustment of reward weights
after training, unlocking new possibilities, some of which we have
explored in this work. While our work targets character control, we
expect the adaptive weight tuning enabled by AMOR to be applica-
ble in other domains as well.

We demonstrated the use of AMOR for sim-to-real transfer by
tuning rewards to reduce the sim-to-real gap, leveraging on-the-fly
reward adjustments and time-varying rewards to push the bound-
aries of dynamic robot motions.

Moreover, we explored a hierarchical extension to AMOR, by
training a HLP which dynamically adjusts reward weights over
time to closely match a given motion reference, using a discrimina-
tor reward. An interesting direction for future work is to explore
alternative higher-level task-based rewards for the HLP.

Another potential application is automated fine-tuning using
robot-in-the-loop online reinforcement learning (ORL) [Wu et al.
2022]. Using AMOR as a low-level policy could reduce training time,
and mitigate the high failure rates observed early in training.

Interestingly, some performance gap is apparent between regular
PPO and MOPPO due to the increased problem complexity. In future
work, this could potentially be reduced through large-scale training
until convergence, or through alternative MORL techniques, e.g., by
employing different strategies for sampling weight vectors during
training [Alegre et al. 2023].
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