A Real-Time 720p Feature Extraction Core Based
on Semantic Kernels Binarized

Michael Schaffner*f, Pascal Hager*, Lukas Cavigelli*, Pierre Greisen*T, Frank K. Giirkaynak*, Hubert Kaeslin*
*ETH Zurich, 8092 Zurich, Switzerland
TDisney Research Zurich, Switzerland

Abstract—Several image processing applications rely on a
sparse set of correspondence points between stereo images to
discern a sparse but robust depth structure of the scene. There
exist several methods to extract and match correspondences, but
they are all computationally extensive and require significant
memory bandwidths. In this paper, we describe an efficient ASIC
core that is able to detect up to 25k interest points in real time on
a 720p video stream using the recently proposed Semantic Kernels
Binarized (SKB) algorithm. To keep the memory bandwidth low,
an optimized method to calculate the filter responses in the
interest point detection stage has been devised. Instead of the
2D integral image we use a local 1D integral image combined
with an incremental updating scheme to calculate the box filters.
The ASIC core is manufactured in 180 nm technology and has
a complexity of 254KkGE. It runs at 100 MHz, has a power
dissipation of 184 mW and is the central processing block for a
larger FPGA based stereo vision system that calculates a sparse
depth map by locating corresponding interest points between left
and right images in real time.

I. INTRODUCTION

Image features are an important tool in many computer
vision applications. They have been intensively studied during
the past decade, and a variety of different algorithms and
variations thereof have been proposed [1]. SIFT [2] and
SUREF [3] are two well-known methods which provide high
quality feature descriptors with a high degree of invariance.
However, the descriptors are costly to compute and consist
of many floating point entries that require a lot of memory.
This renders them less attractive for embedded devices or
hardware implementations, and has spurred the development
of more efficient descriptors such as BRIEF [4], BRISK [5],
FREAK [6] and Semantic Kernels Binarized (SKB) [7]. The
key concept these algorithms leverage is the direct compu-
tation of a binary descriptor. In BRIEF and SKB this is
done by means of intensity comparisons or thresholding. The
use of binary descriptors has the additional benefit that they
occupy much less memory and the matching can be performed
very efficiently using e.g. the Hamming distance as the cost
function.

In this work we consider the calculation of a sparse disparity
map from stereo video, as this is a crucial ingredient for
certain video processing methods such as automatic multiview
conversion [8]. We are currently developing a system which is
able to extract and match descriptors from 720p stereo video
at 30 frames per second and with up to 25 k features per frame.

Our system implements the SKB algorithm [7], as it pro-
vides competitive results in the restricted setting of stereo

vision and is amenable to efficient hardware implementations.
In this paper we present a hardware architecture of the
core part of a system which performs the calculation of the
descriptors. The developed architecture has been implemented
and fabricated in 180nm CMOS technology.

Related work: There exist many FPGA and ASIC im-
plementations of SIFT and SURF, such as [9]-[14]. But to
our knowledge there is only one other ASIC implementation
[15] of an algorithm that makes use of binary descriptors.
Their ASIC is based on a variant of BRIEF and can achieve
a throughput of 94.3 full-HD frames per second with 512
extracted feature points per frame.

Summary of contributions: We have developed a hard-
ware architecture for real-time SKB feature extraction from
720p video at 30 fps for stereo vision applications. Instead of
using a two-dimensional integral image' to compute the filter
responses, we use a local, one-dimensional integral image in
order to overcome the large memory entries and the associated
bandwidth that a two-dimensional integral image entails.

Paper Organization: The system and our version of the
SKB algorithm is explained in Section 2, and a performance
simulation of the implemented configuration is shown at the
end of this section. The hardware architecture is explained in
Section 3, the results and conclusions are given in Section 4.

II. SYSTEM OVERVIEW

When searching for sparse point correspondences in a
stereo pair using image features, the three main steps that have
to be performed are the interest point detection, the descriptor
calculation and descriptor matching. The system we are
currently developing is shown in Figure 1. It is partitioned
into an ASIC and FPGA part, where the ASIC performs the
interest point detection and descriptor calculation, which are
computationally intensive. The FPGA manages the interfaces,
buffers the input images and performs the matching of the
descriptors. In the remainder of this paper we concentrate on
the parts implemented on the ASIC (blue in Figure 1).

A. Algorithm Details

In the following we summarize our version of the SKB
algorithm and point out where it differs from the original [7].

I'The 2D integral image is defined as #i(z,y) = >, 3 i(a’,y’) [16].
z'<zy’ <y

720p stereo e

video @30fps point
. Line Buffer SKB Core 0 correspo-
Video
L~ /Image ndences
Interface Pyramid Output
Y Matching |- Interface >
(Ethernet)
‘ ' SKB Core 1 i
Ext | Further processing,
Acquisition or XR?\rl\r;la - Memory Controller e.g. sparse depth
video source calculation
Fig. 1. Overview of the stereo video feature detection system. The FPGA (in gray) provides the IO interfaces, external memory access, and the matching

operation. The ASIC (blue) performs the computationally intensive SKB feature extraction (there are two identical ASICs, one for each stereo video channel).

The ‘Teddy’ image shown here is from the dataset provided by [17].

1) Interest Point Detection: Similar to the original SKB
implementation, we use a variant of the simple difference
of boxes (DOB) filter to detect interest points in the image.
However, our system builds upon the original DOB version
of CenSurE [18] instead of the modified SUSurE DOB [19]
that is used in the SKB paper. The original CenSurE detector
basically performs a pixel-dense scan on all scales, whereas
the SUSure detector uses a scan line sparsification to leave
out pixel positions which are not likely to lead to an extremal
filter response. The SUSurE detector is about 3x faster than
the CenSurE in software [19], but it exhibits a data dependent,
irregular flow which inhibits parallel processing of different
filter scales. The DOB filter is a simplified Laplacian of Gaus-
sian (LoG) filter and its response is given by the subtraction
of the pixel sums within two quadratic boxes with side length
2n+1 and 4n+ 1. The advantage of this simplified filter is that
it can be efficiently calculated using an integral image [16] as
shown in [7]. The image is filtered using different sizes of
this filter, thereby forming a volume of filter responses which
is also denoted as scale-space. As was noted in [3] and [13],
the largest number of interest points is found on the few first
scales, and in our application we do not require a large scale
invariance of the features. Thus the scale-space is limited to
the first 8 scales (i.e. n € [1,2, ..., Nppaz = 8)).

The DOB filter responses in the scale-space are checked for
extremal points in a local 3 x 3 x 3 neighborhood using non-
maximum suppression (NMS), and a weak response threshold
is applied in order to filter out non-robust interest points.
Maxima can therefore only occur on 6 scales if a total of
8 scales is employed. Note that the integrated box areas must
be properly normalized [18] such that a comparison among
different scales is possible. The DOB filter responses are
already pixel-dense, and thus no further interpolation of the
coordinates is performed?. The output of the interest point
detection is a list of m € [0, 1, ..., M] containing (Z,, Ym., Sm)
tuples, where z,,, and y,,, are the integer image coordinates and
Sm 18 the index of the scale of a particular interest point m.

2) SKB Descriptor Calculation: The SKB descriptor makes
use of a set of sixteen 4 x 4 filter kernels (also called
semantic kernels, shown in Figure 4e) which are evaluated

2In our implementation, no Harris corner test is performed as this operation
is very costly and often not necessary in this application [7].

at 16 positions within a normalized support region around an
interest point. This leads to 256 values which are binarized
using a certain thresholding scheme. In [7] they propose three
different binarization variants A, B and C where A leads to a
256 bit descriptor and B and C lead to a 512 bit descriptor. Here
we use the fast variant A where the 256 values are binarized
by comparing them against 0, i.e. only the sign bit is kept. In
[7] they also define two different support regions (type A and
B) out of which we use the larger 16 x 16 region (B), as our
experiments show that it performs slightly better (Figure 2).

The (%1, Ym, Sm) tuples from the interest point detector are
used to calculate the coordinates of the support region of that
interest point. Bilinear interpolation is then used to resample
the support region such that it fits into the normalized frame
of 16 x 16 pixels (the scale factors are given by the ratio of the
outer DOB box size of the actual scale and the smallest scale
i.e. (4-sm,+1)/5). Note that we do not perform any rotational
alignment as this is not necessary in the case of stereo
matching. In order to facilitate the bilinear resampling, we
precompute an image pyramid by successive downsampling
of the input image by a factor of two. Depending on the scale
factor of an interest point m, the nearest pyramid level is
then selected as the pixel source (this concept is also known
as mipmapping [20]). This has the advantage that aliasing
artifacts are reduced in the resampled patches and that the
accessed image patch is always contiguous.

0.8}
_ 06f

g ——#— SKB-A

& 0.4f % SKB-B 1
—B8— SIFT
0.2 —+— SKB-B fixed point| |
Ot ; ; ; ;]
0 0.05 0.1 0.15 0.2 0.25
1 - Precision

Fig. 2. Matching performance simulation with the stereo test set ‘Babyl’
from [21]. The Recall is the ratio of correct matches and existing correspon-
dences between left and right image, and /-Precision is the percentage of false
matches [1]. The SKB type B performs better than type A. The slightly lower
performance of our ASIC implementation is due to the fixed point arithmetic.
The performance of the SIFT descriptor (evaluated on DOB interest points)
is shown as a reference (SIFT code from [1]).

" Interest Point Detection
DOB Block NMS Block T
nteres
Pixel 10 14 252 1D 144 24 Point I
S 4 Integral o FIFO > Config
tream < Image Buffer —~— Data
ME’:\OFY 3 2024 bit 21
el 3.1 Kbit SRAM. registers
" Interest Point Description
Dcu2 Descriptor
|~ , Output
Stream
78 a1
Mipmap
25
272 272
Image - 4 k — 1.2kbit
Data e

Fig. 3.

ASIC Top-Level Diagram with two Descriptor Calculation Units (DCUs): The ASIC is supplied with raw 8bit gray-scale image pixels. It first

searches interest points within the image, whose surroundings are described in a second step. For the description an image patch around the interest point is
transferred to the ASIC as well. The final descriptors are sent back to the FPGA for matching.

III. ASIC ARCHITECTURE

A top-level diagram of the ASIC architecture is shown in
Figure 3. It is composed of two main blocks which perform
the interest point detection and the descriptor calculation.
The interest point detection performs a dense scan over the
whole image and is constantly supplied with image data
by the FPGA. The detected interest points are temporarily
stored in a FIFO, before they are fetched by the descriptor
calculation units (DCUs). Note that the interest points are
distributed sparsely over the whole image. The DCU has been
designed to handle up to 12.5k descriptors. Depending on
the desired descriptor throughput, several instances can be
operated in parallel. The FIFO serves to compensate local
variations in throughput. Based on the position and scale of
a certain interest point, the DCUs request the corresponding
image patch from the FPGA. The resulting descriptors, their
position, and the scale are then transferred back to the FPGA
for further processing. For all throughput calculations we use a
clock frequency of 100 MHz which is reasonable for the target
technology (180nm) and allows for convenient interfacing
with the FPGA.

A. Interest Point Detection

1) Evaluation of DOB Filters using a 1D Integral Image:
A total of eight DOB responses have to be evaluated for
each pixel - one for each scale in the scale-space. Each DOB
filter response can be decomposed into a linear combination
of an inner and an outer box filter response. Those box
filter responses are usually calculated with the aid of a 2D
integral image, which allows to compute the sum over an
arbitrary rectangular area by accessing only four values in the
integral image [16]. However, this integral image requires a
lot of memory: while a conventional 720p gray scale image
composed of 8bit values requires almost 7.4 Mbit, the cor-
responding integral image requires large 28 bit entries which
results in 25.8 Mbit. Moreover, a large bandwidth from the
memory is required as 8 values have to be accessed per DOB
filter response. For N,,,, = 8 scales and an effective image

size of Zepp X yepr = 1248 x 688 pixel this results in a
bandwidth of Zefr X Yepr X Nipar X 8 x 28bit ~ 1.54 Gbit
per frame. The effective image dimensions are given by
Teff = Tres — 4 x Nmax and Yeff = Yres — 4 x Nma:m
respectively. One option to reduce this bandwidth is to transfer
and locally store whole blocks of the integral image in order
to leverage the spatial overlap among subsequent filters [12].
In our implementation we use only a one-dimensional local
integral image. Our approach builds on the observation in [19]

+ a 777% ©
| [+ & i
= x
+ + [} £
+ + g -4
+ + '*g
+ + :F d o
+ [[%:
£ A
s ‘ ‘ X
\ = .
a) Recursive Filter b) Update of one ﬁ oA
; . t tat
Calculation: Inner and Box Response with stripe orlentation
Outer Box of one DOB Filter 1D Integral Image ¢) NMS Evaluation Slice
= [| Edges Corners Ridges Saddles
[+ === 1={=1=U=|=1=1==-1=]+]|+
| [+]+]=-]-]]- + +[+[+]+][-]-]+]+
R e e | e I I S I S I | I o
===+ == === -
—I=1=1=l=|=1=1=ll=1+|+]- -+
o sy | ey oy ey oy e | ey ey ey
= R R
R o e I | o I I e | I I I + |-
- L ===+ +]+]-]|-]= + - -
T_ + ==+ +|+]=]- +
|l |+]+ ++]+]- + -
| [+]+]+ SEEEN -] -]
| | =1=1= —|+]|+]|+]]+ -1=l=1=1-1-
-|- +|| =]+]+ + —||=|+|+]|-
g : bhb—d] r - ++|[=+ = + -[+]+]-
B Kernel set evaluation center M Interest point il)l el il
d) Descriptor Support Region e) Semantic Kernels

Fig. 4. Algorithmic Details: a) Recursive DOB filter calculation for the green
pixel position. b) 1D integral image box response update. ¢) NMS evaluation:
the most recently added stack is colored in red. d) The descriptor support
region is overlayed over an image patch showing the centers around which
the set of semantic kernels depicted in e) is evaluated.

D Input 1D Integral
Integrator ~ Buffer Image Mem.
—

o 1 1
/<I'H> Dual Port

Memory

ke
/<I'H> Dual Port "‘L’Iﬂ

Memory

L Hp s

Box Response Calculation
(requires 3 cycles for 12 boxes)

Filter Response Calculation
(8 DOB responses in 3 cycles)

| Pixel Stream

-Is 8 Filter Responses
18 (Stackin
Scale-Space)

os L

o Intotal 3 box-to filter —: |
® response conversion _°
® units 5

o Intotal 12

® accumulator
.

o Intotal9 chains

® memory

® chains

'/<I-I-I-> Dual Port ';"I‘l
9

Memory

BITTRE OB

—]
—
The two register banks —
(accumulation registers and shift

register chain) can be swapped

for instantaneous data exchange.

VYVVYY ¥V VvV V

I Box Response I

Memory
1i64=3.1h600

Fig. 5. The DOB filter block receives a dense pixel stream and calculates
the DOB responses, which are output as stacks of eight values in scale-space
(highlighted in red in Figure 4c). The constants I,, and O, are the appropriate
normalization factors for the inner and outer boxes of scale n.

where they show how a box filter response can be calculated
recursively, provided that a dense scan is performed on the
whole image. When scanning from left ro right, a box filter
response can be updated by adding the new pixels the box
covers on the right side, and subtracting the pixels that are
no longer covered by the box on the left side (Figure 4a).
However, the number of additions is still linearly dependent
on the filter size. In our architecture, we additionally make
use of the observation that the pixel groups that have to be
added or subtracted are always continuous pixel columns. It
is therefore possible to use a one-dimensional integral image
which enables the calculation of 1D-sums along the columns
in constant time (two memory accesses and one subtraction).
This allows us to update a box response by accessing only
four values (see Figure 4b):

B, = Bi_l—(b—a)—l—(d—c) = Bi_l—i—(a—c)—i—(d—b). @))

The terms can be reordered such that only differences between
two values in the same row need to be added. Note that
the one-dimensional integral image can be easily constructed
locally as the integration direction is orthogonal to the scan-
ning direction - i.e. if the image is processed in stripes of
a certain height h, the integration amounts to the addition
of h values, and is completely independent of the width of
an image. This enables a hardware architecture that only
needs to store a sliding window of the original image in an
external memory, and the memory bandwidth can be reduced
considerably compared to a naive implementation using a two
dimensional integral image.

2) DOB Block Details: The image is scanned on all scales
in parallel, as otherwise several scanning passes through the
image would be required. The FPGA contains the sliding
window buffer of the input image and supplies the DOB
block on the ASIC with a constant stream of raw image data.
The image is processed in overlapping stripes with height
h =4 X Npazr + k where 4 X Ny = 32 is the minimum
neighborhood required for 8 scales, and £ is the number of
effectively calculated box filter responses within one column
of the stripe. In order to enable non-maximum suppression
in a 3 X 3 x 3 neighborhood, the inner part of evaluated
responses of a stripe need to be overlapped by another 2

. Compare neighbouring Signals .
. Bitwise AND !

NMS &

Result for
one Stack

Scale-

Space

Stack s.op
L]

ot sx19m sxiom
(S g L} L]
15 16 317

StackIndex: _j i

C i Intra Stack Stack

Stacks in Next/Previous Slice Thresholding

Fig. 6. The NMS block receives a stack of 8 DOB responses per pixel
position (red stack in Figure 4c), performs the NMS, and applies the weak
response threshold. The 8 DOB responses are stored in 8 x 18 bit wide registers
and the intermediate comparison results in 6 bit wide registers.

pixels - i.e. subsequent stripes have a relative offset of & — 2
rows. A larger value of k reduces the overhead due to the
overlap among subsequent stripes, but it also increases the
size of the local integral image buffer. In our implementation
we use a value of £ = 16. This results in a total bandwidth of
(4 X Nypag + k) X Zpes x [14 2220 5 8 bit & 24.1 Mbiit per
frame, and the local integral image buffer has to hold at least
(4 X Nz + k) X (4 X Nypar + 1) = 1584 entries. A detailed
block diagram of the DOB unit is shown in Figure 5. The input
is supplied in column major format, which enables simple
1D integration along the columns. Note that with £ = 16,
it is sufficient to transfer one pixel to the ASIC per cycle as
this translates into a frame rate of roughly 33.2 frames per
second at a clock frequency of 100 MHz. The 1D-integration
of a column takes 48 cycles in this case, and the downstream
circuitry is designed to calculate all N, X kK = 128 DOB
responses during this time. Some of the inner and outer boxes
of the DOB-filter across different scales coincide, such that
only 12 out of 16 boxes have to be effectively evaluated in the
case of 8 scales. The 1D integral image memory is organized
as a ring buffer an can hold 48 rows with a width of 34
pixels. The rows of this memory are segmented into 9 dual
port memories in a special pattern to guarantee a collision
free, parallel access for the box filter response calculation.
Note that the values are accessed in such a way that the
difference of two values in one row (see previous section)
can be immediately calculated at the memory output, which
reduces the multiplexing overhead of the subsequent logic.
The previous box filter responses for the recursive calculation
are stored in another memory. In one computation cycle, the
k = 16 sets of 12 box responses are sequentially loaded,
updated and stored again. For faster loading and storing, as
illustrated in Figure 5, two interchangeable register banks are
used: while one bank is in accumulator bank configuration, the
other bank is organized as a shift register such that the inter-
mediate values can be shifted to and from the memory. In three
cycles all 12 accumulators update their box response according
to (1). Finally, the weighted sums among the intermediate
box responses are formed to get the DOB response. For this
purpose, three units are used which are able to calculate 8
DOB responses in 3 cycles.

3) NMS Block Details: The detailed block diagram of the
NMS unit is given in Figure 6. It receives the filter responses
from the DOB unit and performs a slice-wise NMS on the local

Bilinear Interpolation Kernel Response Calculation

] o
partial descriptor |

- + Intotal 16 kernel

e convolution units

)) 1

Fig. 7. The descriptor calculation unit (shown without the channel controller)
contains a bilinear interpolator and 16 kernel response units. Note that the
kernel weights are implemented without multipliers.

offset calculation

scale-space volume with dimensions k X 3 X N, 4.. Note that
since the DOB block outputs one entire scale-space stack in
parallel (shown in red in Figure 4c) it is sufficient to only keep
track of the last 16 scale-space stacks and the 6 intermediate
comparison results within one stack. Further observe that the
intermediate results need not be calculated for the scales at
the border of the volume.

After suppressing the non-maximum responses, the weak
response threshold is applied to the remaining interest point
candidates. Finally, the coordinates of the points that pass this
test are written to the interest point FIFO.

B. Interest Point Description

In contrast to the interest point detection, the descriptor
calculation operates on sparse data. It has to operate fast
enough such that - on average - it is able to process all
interest points in an image. Evaluations have shown, that
several thousand interest points per frame are detected when
setting the weak response threshold in a reasonable range.
The interest point description block is designed to be scalable
and consists of parallel descriptor calculation units (DCUs)
which can process up to 12.5k descriptors per frame each. If
the application requires a high throughput, this can be easily
achieved by instantiating the appropriate amount of DCUs and
adjusting the bandwidth of the image memory accordingly.
The current implementation uses two DCUs which results in
an aggregated throughput of 25k descriptors per frame.

The interest point description block takes interest points
from the FIFO buffer and assigns each one of them to a DCU,
which acquires the required data from the nearest mipmap
level from the FPGA through the transfer controller. Then this
data is interpolated to a normalized 16 x 16 image patch which
is convolved with several filter kernels and the responses are
binarized using a threshold before the result is written to the
output buffer.

1) DCU Assignment and Data Transfer: The interest points
are read from the FIFO and the patch coordinate calculation
block determines additional parameters such as the corre-
sponding mipmap level, the coordinates, the dimensions of
the patch to be fetched from that mipmap level, the initial
offset, and the step sizes of the bilinear interpolator. The patch

coordinate calculation unit then dispatches this information
together with the interest point to an available DCU.

The mipmap is selected according to the scale parame-
ter s of the interest points. The employed strategy is to
always choose the nearest mipmap (in scale). This reduces
the required amount of data by a factor of approximately 2
on average compared to always selecting the lower mipmap
without significant changes to the matching performance.
Moreover, since the first scale where feature points can occur
is (4x241)/(4x1+1) = 1.8, it is not necessary to access
the lowest mipmap (which is the original image). This allows
to reduce the sliding window size for the original image to the
minimum of around 4 X Ny, + k + k — 2 on the FPGA side.

Each DCU has a local pixel buffer that temporarily stores
the data used by the interpolator. This reduces the required
throughput of the interface significantly - in some cases
certain pixels are used up to 9 times within a few cycles.
Whenever there is enough free space in the buffer, the DCU
requests another two lines of the mipmap image patch from
the transfer controller. The transfer controller acknowledges
them whenever it has the capacity, and passes the request on
to the FPGA while still receiving the response to an earlier
request.

2) Descriptor Calculation: A detailed block diagram of the
datapath of one DCU is shown in Figure 7. First, the acquired
patch from the nearest mipmap is resampled with a scaling
factor in [0.75,1.5) using bilinear interpolation to complete
the normalization of the support region. In a second step,
the resulting row-wise stream of single pixels of the resulting
16x 16 support region (Figure 4d) is convolved with the 16
semantic filter kernels shown in Figure 4e. One DCU is able
to process one interpolated pixel per cycle, which involves the
evaluation of 16 kernel updates. Since the normalized image
patch is processed in scanline order, it is necessary to keep
track of four sets of 16 temporary kernel responses. Whenever
the convolution of a set of filters is completed, it is binarized
using a threshold, and the resulting part of the descriptor is
written to the output buffer.

3) Throughput: The raw descriptor calculation throughput
of one DCU is one descriptor in 256 cycles which translates
into around 12.5 k descriptors per frame (slightly less than 13k
due to control overhead). However this assumes that image
data is always present for the bilinear interpolation. This is
not always the case since the size of the image patches that
are requested from the FPGA vary up to a factor of 2.44 in
size (the smallest image patch size is 16 and the largest 252
pixels). The effective throughput may thus be dependent on the
speed of this interface. In our implementation, the interface can
deliver 24 x 100 Mbit/s of pixel data, which depending on the
patch size corresponds to between 15 k and 38 k image patches
in the worst and best case including control overhead. This
rate is sufficient to supply one DCU continuously. However,
to cope with feature point clusters, it is important to have
a higher throughput than what the average case suggests.
This is necessary to keep the interest point FIFO size within
reasonable limits. If the FIFO is too small, some of the interest

TABLE I
MEASUREMENT RESULTS OF THE SANDSTORM CHIP.

Physical Characteristics

Technology UMC 180 nm, 6 Metal Layers
Core Voltage 1.8V
Package CQFP 120
pads 82 (I:40, O: 26, PWR: 16)
Core Area 3.08 mm?

254kGE (2.4 mm?)

193kGE (1.8 mm?)

29 kbit

100 MHz

146 mW (core) + 38 mW (pads)

Circuit Complexity (with SRAM)
Logic (std. cells)

On-chip SRAM

Maximum Clock Frequency

Power Dissipation @ 100 MHz,1.8 V
Performance

Throughput (with 720p frames)
Max. Desc./Frame

30 fps
15k-25k

points can be dropped when the density of interest points gets
too large. In our design we use two DCUs which together are
able to process at least 15k descriptors in the IO-limited case,
and up to 25k in the computationally limited case.

C. Output Interface

The output interface transmits each interest point together
with its descriptor, i.e., the 24 bit triplet (z, y, s) and the 256 bit
descriptor as a data packet over a 4bit wide bus requiring
71cycles. A DCU requires at least 256 cycles to calculate a
descriptor. The output interface guarantees that all results can
be transmitted within these 256 cycles. Each DCU contains an
output buffer that can store two finished descriptors in order
to bridge time periods where the output transfer controller is
busy transmitting a descriptor from a different DCU.

IV. RESULTS AND CONCLUSIONS

The ASIC has been named SANDSTORM and was fabricated
in 180 nm CMOS technology. Table I shows the key figures. At
100 MHz, it is able to process 720p video at 30 fps with 15 k-
25 k descriptors per frame (depending on the distribution of the
descriptor scales). The same design has also been synthesized
for a Stratix IV EP4S100GSF451 FPGA. On this FPGA, it
runs with up to 102MHz and consumes 15’715 logic cells
(4%), 15°242 registers (4%), 27 k memory bits (<1%) and 34
18 bit DSP elements (3%). We showed that it is possible to
implement the SKB feature matching algorithm efficiently in
hardware even for demanding video applications.

REFERENCES

[1] K. Mikolajczyk and C. Schmid, “A performance evaluation of local
descriptors,” IEEE transactions on pattern analysis and machine intel-
ligence, pp. 1615-1630, 2005.

[2] D. Lowe, “Distinctive image features from scale-invariant keypoints,”
International journal of computer vision, vol. 60, no. 2, pp. 91-110,
2004.

[3] H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded up robust
features,” Computer Vision ECCV 2006, pp. 404-417, 2006.

[4] M. Calonder, V. Lepetit, C. Strecha, and P. Fua, “Brief: Binary robust
independent elementary features,” in Computer Vision ECCV 2010, ser.
Lecture Notes in Computer Science, 2010, vol. 6314, pp. 778-792.

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Fig. 8.

Microphotograph of the SANDSTORM chip.

S. Leutenegger, M. Chli, and R. Siegwart, “Brisk: Binary robust invariant
scalable keypoints,” in Computer Vision (ICCV), 2011 IEEE Interna-
tional Conference on, 2011, pp. 2548-2555.

A. Alahi, R. Ortiz, and P. Vandergheynst, “Freak: Fast retina keypoint,”
in Computer Vision and Pattern Recognition (CVPR), 2012 IEEE
Conference on, 2012, pp. 510-517.

F. Zilly, C. Riechert, P. Eisert, and P. Kauff, “Semantic kernels binarized
- a feature descriptor for fast and robust matching,” in Visual Media
Production (CVMP), 2011 Conference for, nov. 2011, pp. 39 —48.

M. Farre, O. Wang, M. Lang, N. Stefanoski, A. Hornung, and A. Smolic,
“Automatic content creation for multiview autostereoscopic displays
using image domain warping,” in Multimedia and Expo (ICME), 2011
IEEE International Conference on, 2011, pp. 1-6.

V. Bonato, E. Marques, and G. Constantinides, “A parallel hardware
architecture for scale and rotation invariant feature detection,” Circuits
and Systems for Video Technology, IEEE Transactions on, vol. 18, no. 12,
pp. 1703-1712, 2008.

J. Svab, T. Krajnik, J. Faigl, and L. Preucil, “FPGA based Speeded
Up Robust Features,” in Technologies for Practical Robot Applications
(TePRA), 2009. IEEE International Conference on, 2009, pp. 35-41.
D. Bouris, A. Nikitakis, and J. Walters, “Fast and efficient fpga-based
feature detection employing the surf algorithm,” in Field-Programmable
Custom Computing Machines (FCCM), 2010 18th IEEE Annual Inter-
national Symposium on, 2010, pp. 3-10.

M. Schaeferling and G. Kiefer, “Object recognition on a chip: A com-
plete surf-based system on a single fpga,” in Reconfigurable Computing
and FPGAs, 2011 International Conference on, 2011, pp. 49-54.

T. Sledevic and A. Serackis, “Surf algorithm implementation on fpga,” in
Baltic Electronics Conference (BEC), 13th Biennial, 2012, pp. 291-294.
D. Jeon, Y. Kim, I. Lee, Z. Zhang, D. Blaauw, and D. Sylvester,
“A 470mv 2.7mw feature extraction-accelerator for micro-autonomous
vehicle navigation in 28nm cmos,” in Solid-State Circuits Conference
Digest of Technical Papers (ISSCC), 2013 IEEE International, 2013,
pp. 166-167.

J.-S. Park, H.-E. Kim, and L.-S. Kim, “A 182 mw 94.3 f/s in full hd
pattern-matching based image recognition accelerator for an embedded
vision system in 0.13-cmos technology,” Circuits and Systems for Video
Technology, IEEE Transactions on, vol. 23, no. 5, pp. 832-845, 2013.
P. Viola and M. Jones, “Rapid object detection using a boosted cas-
cade of simple features,” in Computer Vision and Pattern Recognition
(CVPR). 2001 IEEE Conference on, vol. 1, 2001, pp. I-511-1-518 vol.1.
D. Scharstein and R. Szeliski, “High-accuracy stereo depth maps using
structured light,” in Computer Vision and Pattern Recognition, 2003.
Proceedings. 2003 IEEE Conference on, vol. 1, 2003, pp. I-195.

M. Agrawal, K. Konolige, and M. Blas, “Censure: Center surround
extremas for realtime feature detection and matching,” in Computer
Vision ECCV 2008, ser. Lecture Notes in Computer Science, 2008,
vol. 5305, pp. 102-115.

M. Ebrahimi and W. Mayol-Cuevas, “Susure: Speeded up surround
extrema feature detector and descriptor for realtime applications,” in
"Workshop on Feature Detectors and Descriptors: The State Of The Art
and Beyond” as part of IEEE Conference CVPR 2009, June 2009.

T. Akenine-Moller, E. Haines, and N. Hoffman, Real-time rendering.
AK Peters, 2008.

H. Hirschmiiller and D. Scharstein, “Evaluation of cost functions for
stereo matching,” in Computer Vision and Pattern Recognition (CVPR),
2007 IEEE Conference on, 2007, pp. 1-8.

