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Abstract— In this paper, we demonstrate that a neuromuscu-
lar controller built based on the human anatomical structure
and motion data can realize human-like responses to unexpected
disturbances during locomotion. This particular work concerns
the response to trips due to obstacles and shows that the
two strategies identified in biomechanics emerge from a single
controller. We first identify the parameters of a neuromuscular
network model using the muscle tension data during a human
walking motion. The anatomically-correct network models the
somatosensory reflex of the human neuromuscular system. We
use this network as the controller for a musculoskeletal human
model to simulate its response to disturbances. Simulation
results show that our neuromuscular controller automatically
results in the appropriate trip recovery strategy with a single
set of parameters, although we do not explicitly model the trip
response or the condition to invoke each strategy. This result
implies that an appropriately designed locomotion controller
can also provide rapid responses to trips without deliberate
controller selection or planning.

I. INTRODUCTION

Responding to unexpected disturbances is critical to biped
robots standing and walking in uncontrolled environments,
and a number of controllers have been developed for recov-
ering balance from various types of disturbances such as ex-
ternal forces and uncertainty in the environment. Most work
involves controller selection or motion replanning according
to the state change caused by disturbances. In human mo-
tions, on the other hand, initial responses to disturbances take
place before the sensory feedback involving the cerebellum
can occur considering the signal transmission delay in the
human nerve system [1]. Therefore, we can speculate that at
least the initial response happens using the same controller
as the normal behavior.

Tripping due to obstacles is one of the disturbances that
requires rapid response for recovery but has been much less
studied in robotics. According to the biomechanics litera-
ture [2], humans take one of the two strategies to prevent
falling after trips, i.e., elevating and lowering strategies,
depending on whether the trip occurred near the liftoff or
the touchdown of the swing leg. The response is clearly in-
voluntary because it can be observed in less than 100 ms after
the trip, which is shorter than the time required to perform
any voluntary feedback control using the cerebellum.

In this paper, we apply our earlier work on neuromuscular
network model [3], [4], [5] to simulate disturbance response,
with focus on balance recovery from trips. The model is
an anatomically-correct neural network that represents the
human somatosensory reflex loop with time delay. Taking
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the muscle lengths and tensions as inputs, the model outputs
the muscle activities at the next time step. We can identify
the model parameters using muscle length and tension data
computed using inverse kinematics and dynamics algorithms
for musculoskeletal human models [5]. In our previous
work [4], we demonstrated that the model can successfully
reproduce the knee jerk behavior in patellar tendon reflex.

We use a neuromuscular network model as the controller
for a musculoskeletal model to simulate its behavior after
trips. Although the model is identified only from a walking
motion and is able to reproduce a walking motion when there
is no disturbance, the two strategies for balance recovery af-
ter trips emerge from the same controller. This result implies
that an appropriately designed locomotion controller can also
provide rapid responses to trips without deliberate controller
selection or motion replanning. In robotics, this approach
will lead to more robust control of biped robots because
a locomotion controller can quickly react to disturbances
before controller switching or motion replanning takes place.

The result also serves as a partial verification of our neu-
romuscular network model. While our previous verification
using patellar tendon reflex [4] only involved a single reflex
loop, locomotion and tripping are more complex behaviors
that involve the coordination of multiple muscles and reflex
loops.

The rest of this paper is organized as follows. In Section II,
we review related work on balance recovery for biped
robots. In Section III, we summarize our neuromuscular
network model and the method for identifying its param-
eters. Section IV introduces the human trip response studied
in the biomechanics field and our method for simulating
the response using our neuromuscular network model. We
present the simulation results in Section V, followed by the
concluding remarks in Section VI.

II. RELATED WORK

Among a number of possible disturbances, balance recov-
ery under external forces has been relatively well studied.
Sugihara et al. [6] described a method for recovering bal-
ance by modifying the center of mass trajectory. Kudoh et
al. [7] formulated an optimization problem for generating
balance recovery behaviors in response to external forces.
The work was subsequently extended to include stepping
behavior [8]. Yamamoto et al. [9] proposed to plan steps
based on the criterion that maximizes the set of initial
states that a controller can bring to a statically stable pose.
Atkeson et al. [10] showed that a single controller can exhibit
multiple strategies for balancing. Stephens et al. [11], [12]
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also developed controllers for recovering from large external
forces or unexpected loads.

Some work deals with external forces during locomotion.
Huang et al. [13] used a set of fast online controllers
along with offline pattern generation to handle disturbances.
Komura et al. [14] developed a controller to absorb the
angular momentum generated by external forces by changing
the foot placement.

Another possible source of disturbance is uncertainty in
the environment. Nishiwaki et al. [15] developed a frame-
work for locomotion control where the gait is replanned
based on the estimated posture that may be different from
the planned one due to irregular terrains.

All of the above work requires a controller that has to be
invoked when disturbances occur, or a set of controllers that
should be designed in advance by modeling specific balance
recovery behaviors. Our controller, on the other hand, is
built and identified based on human anatomical model and
walking motions without any reference to the human tripping
behavior.

Compared to the disturbances mentioned above, respond-
ing to trips due to obstacles is less studied. In biomechanics,
researchers analyzed the human tripping behavior and iden-
tified the two strategies to avoid the obstacle and recover
balance [2]. However, the only work we are aware of that
simulates trip response is by Shiratori et al. [16], where
dedicated controllers for the elevating and lowering strategies
are designed using finite state machines.

III. NEUROMUSCULOSKELETAL MODEL

The neuromusculoskeletal model used in this work (Fig. 1)
is a simplified version of the model presented in [5]. The
model consists of the following elements:

1) The skeleton is simplified to a planar model in the
sagittal plane with one rotational joint for each of the
hip, knee and ankle joints.

2) Accordingly, we only consider the major muscles rele-
vant to the flexion/extension movements of these active
joints. This simplification leaves us 7 muscles for each
leg: Hamstrings (HAMS), Gluteus Maximus (GLU),
Tibialis Anterior (TA), Gastrocnemius (GAS), Rectus
Femoris (RF), Vastus Lateralis (VAS), and Soleus
(SOL).

3) Each muscle is associated with a physiological muscle
model [17], [18] that relates the muscle tension with
the muscle activity, length, and its velocity by

fi = −aiFl(li)Fv(l̇i)Fmax,i, (1)

where fi, ai, li, l̇i, Fmax,i represent the tension, ac-
tivity, length, velocity, and maximum voluntary force
of i-th muscle, and Fl(∗) and Fv(∗) are the functions
that represent length-tension and velocity-tension rela-
tionship respectively.

4) A proprioceptive receptor model [19], [20] is used to
emulate the sensory information of the muscle spindles
that detect the muscle length and its velocity, and the
Golgi tendon organs that detect the muscle tension.

Fig. 1. The neuromusculoskeletal system. This system consists of the
musculoskeletal model, physiological muscle model, proprioceptive receptor
model, and neuromuscular network model. Only representative fibers and
receptors are drawn.

TABLE I
LENGTH IN METERS OF THE NERVE BETWEEN EACH PAIR OF MUSCLE

AND VERTEBRA. — REPRESENTS NO CONNECTION.

muscles L2 L3 L4 L5 S1 S2
HAMS — — — 0.57 0.56 0.55
GLU — — — 0.49 0.48 0.47
TA — — 1.08 1.06 1.05 —

GAS — — — — 1.13 1.10
RF 0.57 0.55 0.53 — — —

VAS 0.68 0.65 0.64 — — —
SOL — — — — 1.28 1.25

5) We build a neuromuscular network model [5] of
the anatomically-correct neuronal binding among the
muscles, proprioceptive receptors, and the spinal
nerves [21], [22]. The model is a neural network with
time delay for nerve signal transmission. Among the
31 vertebral columns, L2–L5, S1 and S2 are relevant
to the muscles in our model. TABLE I summarizes the
length of the nerve between each pair of muscle and
vertebra if there exists a connection.

The weight parameters of the neurons in the neuromus-
cular network model are unknown. The parameters can be
identified using any human motion data by the following
process:

1) Compute the muscle length and tension by inverse
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kinematics and dynamics [23], [24]. Also obtain the
time derivative of the muscle lengths.

2) Convert the muscle tension to muscle activity using
the physiological muscle model. Then compute the
proprioceptive information using the proprioceptive
receptor model.

3) Apply the standard back-propagation algorithm [25] to
optimize the weight parameters.

IV. SIMULATING THE HUMAN TRIP RESPONSE

A. Human Trip Response

According to studies in biomechanics [2], [26], humans
take one of the following two strategies to recover balance
after trips:

1) Elevating strategy: If the trip happened at the early
stage of the swing (5–25% of the swing phase), the
swing leg is lifted by the activation of Biceps Femoris
that occurs 64 ms after the trip, resulting in an obstacle
avoidance behavior.

2) Lowering strategy: If the trip happened later in the
swing (55–75% of the swing phase), the swing foot is
lowered by the activation of Rectus Femoris and Soleus
that occurs 50–100 ms after the trip. These muscle
activations result in an immediate contact of the swing
leg with the ground.

Either strategy may appear when the trip happened in the
middle of the swing.

As shown here, the initial response appears as a change
in the muscle tension pattern as early as 50 ms after the trip,
which is much faster than any voluntary feedback involving
the cerebellum. Therefore, it would be reasonable to assume
that no voluntary controller switching or planning occurs
after a trip, and a locomotion controller that has been used
to generate the walking motion should be able to produce
the trip response.

B. Simulation with the Neuromuscular Network Model

We take the advantage of the biomechanics knowledge
and investigate if our neuromuscular network model can
reproduce these strategies even if the model parameters
are learned only from locomotion data. We are particularly
interested in the muscle tensions and swing leg behavior
during the period from 0 to 100 ms after the trip. If the
trip response strategies do emerge from a single controller,
it suggests that an appropriate locomotion controller may be
able to rapidly respond to trips, allowing enough time for
other controllers or replanning algorithms to take over and
thus realizing more robust locomotion control.

A successful reproduction of trip responses will also serve
as another validation of our neuromuscular model. In contrast
to the patellar tendon reflex used in the previous validation
that only involves a single reflex loop [4], walking and trip
response require the coordination of leg muscles.

We use the musculoskeletal model described in Section III
for the simulation and place an obstacle on the walk path so
that a trip occurs at a desired time. Before the trip, we assume

that a walking motion sequence is replayed and compute the
inverse dynamics to estimate the muscle tensions [23], [24].

When the swing leg hits the obstacle, we start the dy-
namics simulation using a dynamics simulator for humanoid
robots [27]. We use the neuromuscular network model as
the controller to obtain the joint torques of the skeleton
model. The neuromuscular network first computes the muscle
activities at time t from the state of the musculoskeletal
model at time t − td where td is the nerve signal trans-
mission delay determined from the length of the nerves.
The muscle activities are then converted to muscle tensions
using a physiological muscle model [17], [18] and the current
muscle lengths and their velocities. Finally, joint torques are
computed from the muscle tensions using the Jacobian matrix
of muscle length with respect to the joint angles [23]. The
joint accelerations computed by the simulator are integrated
to obtain the state at the next time step.

In addition to the muscles shown in Fig. 1, we also
add several other elements to account for the elements
unmodeled in the musculoskeletal model. Each joint in the
upper body and arms is actuated by a proportional-derivative
(PD) controller. Each of the knee joints receives additional
spring-damper torque when the joint angle approaches the
joint limit. A pair of weak spring and damper is attached to
each ankle joint to model the passive elements around the
joint because the passive torque has strong effect on the joint
motion due to the small mass and inertia.

V. EXPERIMENTAL RESULTS

A. Identification of the Neuromuscular Network Model

The walking motion sequence for the identification is
captured by a commercial marker-based optical motion cap-
ture system with 16 cameras (resolution: 1280×1024 pixels,
frame rate: 120 fps). The subject wears 52 markers whose
locations are determined based on an improved version of
Helen Hayes Hospital marker set [28]. In the neural network
training [25], we used 0.01 for the learning rate, 0.001 for
the forgetting rate, and 1000 for the number of iterations.

Figure 2 shows the result of the training, where the muscle
activity obtained by inverse dynamics computation is shown
in blue dotted line and the output of the network model is
shown in red solid line for each of the left leg muscles. The
vertical axis represents the muscle activity. The maximum
error is 36%, the average error is 2.0%, and the variance
is 3.7×10−6. As shown in the graphs, the neuromuscular
network model can precisely reproduce the muscle activity
patterns, except for occasional peaks in some muscles such
as Gluteus Maximus and Gastrocnemius.

We also verify the learned model by simulating one
walk step resulting from the muscle tensions computed by
the neuromuscular network model. The simulation result is
shown in the bottom row of Fig. 3 along with the posture in
the original motion capture data in the top row. We do not
expect precise reproduction of the original walking motion
because no reference trajectory is used. The contact condition
would also be different from the original motion capture
data because the simulation uses the bone geometry, while
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Fig. 2. The muscle activity during the walking motion. Red solid line:
the output of the identified neuromusculoskeletal system, blue dotted line:
the muscle activity from the dynamics computation and optimization. Black
vertical solid line: L HS (left heel strike), black vertical dashed line: L TO
(left toe off), gray vertical solid line: R HS (right heel strike), gray vertical
dashed line: R TO (right toe off).

the motion is captured with shoes. However, the simulated
motion is reasonably close to the original data.

B. Simulation of Trip Response

We simulate two cases of trip response separately. All
timestamps in the text and figures are common starting from
the beginning of the motion capture sequence.

In CASE 1, we place the obstacle so that a trip occurs at
13% of the swing phase (timestamp 308 ms) of the left leg,
which should trigger the elevating strategy. In CASE 2, the
trip occurs at 56% of the swing phase (timestamp 515 ms),
which should trigger the lowering strategy. Figure 4 depicts
several snapshots from the simulations, where the top and
bottom rows show the results of CASE 1 and CASE 2
respectively.

Figure 5 shows the muscle tensions exerted by the neuro-
muscular network model in each case. The graphs show the
muscle tensions in CASE 1 and CASE 2 with red and green
lines respectively, as well as the muscle tensions from the
inverse dynamics computation in blue dotted lines.

VI. DISCUSSIONS

We can observe the following points in the experimental
results:

1) The neuromuscular network model can accurately re-
produce the muscle tension patterns in the walking

motion. In addition, despite the lack of reference
trajectory and difference in the contact conditions,
the motion simulated with muscle tensions from the
network model is reasonably close to the original
motion.

2) Figure 4 shows that the neuromuscular network can
generate trip behaviors qualitatively similar to elevat-
ing and lowering strategies. The ankle plantar flexion
and the knee flexion make the obstacle avoidance be-
havior of the swing leg in CASE 1. Also the immediate
contact of the swing leg with the ground is observed
in CASE 2.

3) Figure 5 shows that the simulated muscle activities
match the elevating and lowering behaviors. Pijnappels
et al. [29] reported the EMG data of the supporting leg
in normal locomotion and the elevating behavior after
trips. Compared to their result, the large activations of
Gastrocnemius and Soleus and the slight activation of
Gluteus Maximus are similar, while the large activation
of Hamstrings is not observed in our simulation.

This result has three implications:

• In robotics, it implies that a controller designed for
a normal behavior (e.g., locomotion) may be able to
immediately respond to disturbances before relatively
slow controller switching or motion replanning can take
place. Such combination of controllers will improve the
robustness of balance control.

• In biomechanics, it confirms that it is indeed possible
to produce the physiological observation that initial
trip response occurs before any voluntary control can
happen. However, the response of the voluntary control
still remains an open issue.

• We have also been interested in experimental validation
of our neuromuscular network model. The present result
provides another validation with a more complex, coor-
dinated behavior than the previous one [4], and therefore
supports the validity of the global network structure and
identification technique.

Several directions remain for future work. Our neuro-
muscular network model currently does not include con-
tact information. We expect that adding sensory input on
the contact state will significantly improve the simulated
walking motion using the output of the neuromuscular net-
work model. Another interesting direction is to compare the
network model parameters with the models and controllers
developed in the biomechanics field. For example, Hartmut
et al. [30] developed a hand-tuned locomotion controller for
a biomechanical biped model with a similar set of muscles
as the one used in this paper. By comparing their feedback
gains and our neural network parameters, we can verify if
our data-driven approach can help the controller design for
biped robots.

Our goal is to apply a similar approach to biped robot
control, although it is not straightforward due to the different
structure and actuators. A naive way to use the reflex
model for a robot is to convert the sensor data and muscle
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Fig. 3. Snapshots of the dynamics simulation of walking motion using the identified neuromuscular network model. Top row: normal walking motion
used for the identification, bottom row: result of forward dynamics computation using the identified neuromuscular network model.
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515[ms] 525[ms] 535[ms] 545[ms] 555[ms] 565[ms]

Fig. 4. Snapshots of the response behavior to the trip. Top row: CASE 1 (elevating), bottom row: CASE 2 (lowering). The obstacle hits the swing leg at
13 % of stride duration in CASE 1, and 55 % in CASE 2.

tension commands between a musculoskeletal model and the
actual robot model. Sensor data such as joint angles can be
converted to muscle length by forward kinematics compu-
tation of the musculoskeletal model. Similarly, the muscle
tensions obtained by the reflex model can be converted to
joint torques, which can then be commanded to the robot’s
actuators.
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