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Stable Spaces for Real-time Clothing
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Figure 1: Our method enables the fast animation of detailed garments for human characters. We demonstrate that by using a simple, efficient
technique, the motion of the clothing (skirts, dresses, shirts) for a thousand or more characters can be realistically computed in real-time.

Abstract

We present a technique for learning clothing models that enables
the simultaneous animation of thousands of detailed garments in
real-time. This surprisingly simple conditional model learns and
preserves the key dynamic properties of a cloth motion along with
folding details. Our approach requires no a priori physical model,
but rather treats training data as a “black box.” We show that the
models learned with our method are stable over large time-steps and
can approximately resolve cloth-body collisions. We also show that
within a class of methods, no simpler model covers the full range of
cloth dynamics captured by ours. Our method bridges the current
gap between skinning and physical simulation, combining benefits
of speed from the former with dynamic effects from the latter. We
demonstrate our approach on a variety of apparel worn by male and
female human characters performing a varied set of motions typi-
cally used in video games (e.g., walking, running, jumping, etc.).

CR Categories: I.3.7 [Three-Dimensional Graphics and Real-
ism]: Animation—; I.6.8 [Simulation and Modeling]: Types of
Simulation—Animation

Keywords: cloth animation, character animation, virtual reality,
cloth simulation, video games

1 Introduction

Clothing simulation can now produce stunningly realistic exam-
ples of detailed folding and rich knit textures. However, these ap-
proaches require high resolution meshes to represent fine detail,
complex time-stepping methods to avoid instability, and expen-
sive nonlinear solvers to resolve collisions. Therefore, real-time
applications, such as animation prototyping, training simulations,
and computer games, have relied on fast, low-dimensional, coarse
models. Ideally, we would like to combine the benefits of low-
dimensional representations with the expressive power of detailed
cloth discretization. Interactive applications also require stability
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over long timesteps while maintaining collision constraints. Unfor-
tunately, no existing cloth models satisfy these characteristics.

In this paper, we show that existing cloth simulations can be lever-
aged to create extremely fast proxy models of clothing with all of
these properties. To build these models, we exploit two basic prop-
erties of interactive spaces. First, digital characters exist in low-
dimensional, sometimes finite, configuration spaces such as linear
skinning models or motion graphs. This property allows us to dis-
till the output of complex simulations into compact linear models of
the pose and clothing. Second, clothing collisions are dominated by
body-cloth contact, not self-penetration, particularly for dynamic
motions. This property allows us to build a surprisingly simple
conditional model of the clothing configuration that preserves fold-
ing details. Unlike surface skinning approaches [James and Twigg
2005; Kavan et al. 2010], our method distinguishes between the
clothing and the body state, enabling the cloth to move not only
based on character pose, but also due to internal dynamics. Unlike
model reduction approaches [Barbič and James 2005; Treuille et al.
2006], we assume no a priori physical model; instead, we learn
a linear cloth update based on the pose, cloth history, and a small
number of meta-parameters. We show that our method behaves sur-
prisingly well even for highly non-linear phenomena such as sliding
contact that would be difficult for pure model reduction to handle.

Our method has several advantages over previous simulation and
learning approaches. First, it is fast: timesteps require three matrix
multiplies, enabling the generation of over one-thousand detailed
garments in real-time. Second, it is stable: we present a fundamen-
tal stability criterion that our method satisfies. Third, it approx-
imates collision handling well. Fourth, it requires no knowledge
of physics, instead treating the training simulator as a “black box.”
Finally, our model is simple to implement and achieves results supe-
rior to simpler ones while avoiding the overfitting of more complex
models. We illustrate our model on a variety of garments and mo-
tions typically used in video games. In addition, we analyze, both
quantitatively and qualitatively, the performance of our method as
a function of parameter and modeling choices.

The ability to realistically animate clothing for a large number of
characters in real-time has many potential applications. Virtual
worlds increasingly rely on physical simulation, and our approach
offers the opportunity to incorporate clothing. Because clothing
greatly influences character appearance, our technique could assist
in the accurate preview of keyframe animation or motion capture.
In fact, with a sufficiently rich clothing database, this approach
might offer a routine alternative to the limited range of “skintight”
clothing styles allowed by traditional skinning models.
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2 Related Work

The last decade has seen major advances in cloth simulation for
computer graphics, and we provide only a brief introduction to the
state of the art. A major trend has been the development of in-
creasingly sophisticated models of cloth energy [Baraff and Witkin
1998; Grinspun et al. 2003] as well as understanding the geomet-
ric limits of these approaches [English and Bridson 2008; Gold-
enthal et al. 2007]. Maintaining stability has been addressed by
developing special timestepping schemes, such as implicit inte-
gration [Baraff and Witkin 1998; Volino and Magnenat-Thalmann
2005], and a new approach to asynchronous timestepping [Harmon
et al. 2009]. Another vital issue is cloth collisions, both with ex-
ternal objects [Cordier and Thalmann 2002; Bridson 2005; Vassilev
et al. 2001], and with itself [Bridson et al. 2003; Baraff et al. 2003].
Our work builds upon this research by using a state-of-the-art cloth
simulator [Stam 2009] as training data for our learning approach.

As off-line cloth simulation moves to millions of triangles [Selle
et al. 2009], researchers have explored real-time approaches to cloth
simulation [Rudomin and Castillo 2002], by, for example, coupling
coarse simulation with geometric wrinkle models [Kang et al. 2001;
Kang and Cho 2002] to add fine-scale details. Other research has
accelerated cloth animation by mapping simulation methods to the
graphics processing unit (GPU) to achieve a large constant factor
speedup over CPU algorithms [Nguyen and Donnelly 2005; Vas-
silev et al. 2001]. In contrast to our approach, these GPU methods
do not alter the simulation time complexity of their CPU counter-
parts.

Subspace methods represent an emerging alternative approach to
animating complex phenomena by drastically reducing the num-
ber of parameters through linear dimension reduction. For exam-
ple, meshes can be represented by a linear combination of basis
vectors [James and Twigg 2005; Kavan et al. 2010], effectively de-
coupling the state size from the underlying geometric and dynamic
complexity of the mesh.

Surface skinning methods (e.g., [Kim and Vendrovsky 2008; Shi
et al. 2008]) have also been used as an alternative to simulation
and are amenable to fast real-time implementation in hardware [Kry
et al. 2002]. However, these approaches are only able to model
passive dynamic effects by either learning the parameters of the
skinning from examples [Shi et al. 2008], or by applying secondary
skinning operations based on local visco-elastic elements that con-
trol the behavior of the soft tissue [Larboulette et al. 2005]. Hence,
unlike our approach, they are unsuitable for skirts and other gar-
ments whose state is determined by factors other than the pose of
the character.

Model reduction can handle dynamical effects in linear low-
dimensional models, but requires that the dynamics be known a
priori [An et al. 2008; Barbič and James 2005; Treuille et al. 2006].
In our approach, by contrast, we do not assume that the dynamics
are known, instead treating the entire dynamical system as a “black
box” and learning a quasi-linear proxy to the dynamical system.

Some research has also looked into learning deformation models for
data-driven simulations. Cordier and Magnenat-Thalmann [2005]
augment a coarse cloth simulation with fine wrinkles generated
through linear interpolation of precomputed, full-resolution cloth
simulations. For tighter garments, an artist-directed animation
of wrinkles was introduced by interpolating wrinkles at reference
poses [Cutler et al. 2005].

James and Fatahalian [2003] use a subspace method and learn the
dynamics of the system as a black box, as we do. While their
method can handle arbitrary nonlinearities, they do so by tabulat-
ing a discrete transition table over a subspace of the configuration

space. By contrast, we learn a continuous linear model, which is
more generalizable and vastly more compact. Continuous autore-
gressive models have been proposed by Reissell and Pai [2001] to
model interactive dynamic effects (e.g., candle flame in the wind).
While conceptually similar, their method relied on hand-specified
low-dimensional input and output control signals. In contrast, we
formulate our model in a learned linear subspace.

The learning and control theory communities have also extensively
looked into learning dynamics, a problem often called system iden-
tification [Soderstrom and Stoica 1989]. For linear systems, various
approaches to parameter learning have been proposed, including
expectation maximization [Ghahramani and Hinton 1996] and gra-
dient descent [Ljung 1986]. Subspace methods reduce the dimen-
sionality of the system by learning a lower-dimensional linear sub-
space for the dynamics, often called the hidden state [Viberg 1995],
which better conditions the learning process. We use the widely
adopted least-squares approach [van Overschee and de Moor 1996]
which reduces the learning step to a single matrix inversion.

When the dynamics are unknown, a learned model can be unsta-
ble, even if the underlying system is stable [Chui and Maciejowski
1996]. Various methods have been proposed to address this prob-
lem. Gestel and colleagues [2001] add a regularization term to
the least-squares objective, Lacy and Bernstein [2003] constrain
the largest eigenvalue using semi-definite programming, and re-
cently Siddiqi and colleagues [2007] propose a convex optimization
method that iteratively constructs a set of constraints on matrix sta-
bility. We have found that the models built with our technique are
stable; we derive a measure of stability in Section 6.1 and show that
all our learned models satisfy this criterion.

3 Overview

In general, the appearance of the clothing on a body is a function of
(1) the body pose and the shape at a given moment in time, (2) the
dynamics (e.g., velocity, acceleration) of the cloth at that instant,
and (3) the cloth geometry and material parameters (e.g., whether
it is silk, leather, etc.). This paper shows that by observing cloth
behavior under physical simulation, we can learn a compact proxy
model of the cloth’s behavior that captures key dynamic properties
and interactions with the body. We can then use this model in lieu
of physical simulation to efficiently produce realistic dynamic cloth
animations for virtual characters.

We start by simulating cloth on a skinned character animated by
motion capture data. Based on simulation data, we learn a low-
dimensional representation for both the cloth and the outer surface
of the body by constructing two low-dimensional linear subspace
models. The resulting low-dimensional latent spaces encapsulate
the possible deformations of the cloth and the body respectively,
while accounting for fine detail such as cloth folds. We then learn
a conditional dynamical model of the cloth in the low-dimensional
linear cloth space. The learned conditional dynamical model pro-
vides an efficient means of estimating the latent state of the cloth
over time, based on the current latent state of the body, the history
of past cloth states, and meta-parameters encoding the character’s
root motion in space. We show that the learned models are stable
and are capable of generalizing across different motions and tempo-
ral executions at test time, distinct from the original training set. We
also show that simpler models are inherently incapable of model-
ing important aspects of cloth motion, while more complex models
lead to overfitting and unwarranted (in terms of performance) time
complexity.
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4 Low-dimensional Representation

Given the constrained topology of a particular piece of clothing and
the way that piece of clothing fits on and moves with the body, the
motion of individual facets of the mesh representing the clothing
are not independent. This observation implies that the number of
underlying degrees of freedom in the clothing is much lower than
the number of vertices, and, we argue, largely independent of the
resolution. Hence, we can capture most of the variation in the ge-
ometric appearance of the clothing with relatively few degrees of
freedom. A typical approach to this problem is to learn a subspace
or manifold model using dimensionality reduction.

There is a large body of literature for learning both parametric and
non-parametric models for dimensionality reduction. While non-
parametric models (e.g., GPLVM [Lawrence 2005], Locally Lin-
ear Embedding [Roweis and Saul 2000], Isomap [Tenenbaum et al.
2000] and Stochastic Neighbor Embeddings [Hinton and Roweis
2002]) often tend to produce better performance, their memory rep-
resentation requirements (a function of the training data size) and
speed make them unattractive for our application. Instead, we opt
for a linear parametric model in the form of Principal Component
Analysis (PCA) [Hotelling 1933]. The parametric nature of PCA
ensures that our representation is independent of the training set
size; the linear nature of the model directly translates to computa-
tional efficiency. Furthermore, we tested non-linear dimensional-
ity reduction methods, namely GPLVM and Kernel Regression, but
saw no significant increase in the quality of the results.

The variations learned using the first few principal components for
a dress are illustrated in Figure 2. We apply PCA on the vertices of
the cloth mesh directly; however, one practical issue is the choice
of the space in which these meshes are represented. A representa-
tion in the global space hinders generalization1. With this in mind,
we model the cloth (and the body surface) in a canonical space de-
fined with respect to the skeleton of the underlying character. To do
so, we first transform all cloth (and body) meshes into a canonical
space by: (1) subtracting the global position of the skeleton’s root,
pt ∈ R3 and (2) orienting the meshes so that they are always facing
in one direction (aligning the hips of the skeleton with the x-axis,
by rotating around the vertical axis by rt ∈ R1).

Formally, the cloth mesh at time t, m(c)
t ∈ R3Nc , represented by a

series of Nc vertices ∈ R3, can be encoded by coefficients, yt, in
the learned cloth PCA space spanned by Mc linear bases:

m(c)
t = Rz(rt)

�
Λ(c)yt + µ(c)

�
+ pt, (1)

where Rz(r) is the global 3 × 3 rotation matrix that transforms
the mesh from the canonical coordinate frame to the world, Λ(c) ∈
R3Nc×Mc are the learned bases obtained by singular value decom-
position (SVD), and µ(c) is the mean cloth computed over the entire
simulated dataset.

Similarly, the outer surface of the body at time t, m(b)
t ∈ R3Nb ,

represented by a series of Nb vertices, can be encoded by coeffi-
cients, xt, in the learned body PCA space spanned by Mb linear
bases:

m(b)
t = Rz(rt)

�
Λ(b)xt + µ(b)

�
+ pt, (2)

1For example, if we only observe the behavior of the dress as the person
moves along the x-axis, we will not be able to handle the same motion in
the y-direction at test time.

Mean PC1 PC2 PC3

Figure 2: PCA model for the dress: we show the cloth correspond-
ing to the mean and the +σ (where σ is the standard deviation)
along each of the first three principal components.

where Λ(b) ∈ R3Nb×Mb , and µ(b) is the mean body computed over
the dataset of skinned meshes in the canonical space.

5 Modeling Motion

Now that we have a low-dimensional representation for the cloth,
we address the issue of estimating the state, yt, of this model over
time such that the reconstructed high-dimensional cloth motion ex-
hibits appropriate dynamics for a given motion of the body. The
observation we make here is that the state of the cloth should be
driven by two processes, (1) a conditional kinematic process that
serves as control signal and (2) the internal dynamics of the cloth.
Intuitively, (1) can be thought of as a steady-state appearance of the
cloth once it settles on the body and (2) is the dynamic component
that accounts, for example, for the residual swing of the cloth in a
walk followed by an abrupt stop.

We start by introducing a pure conditional kinematic model (Model
A) that is only capable of accounting for motions of the cloth that
do not exhibit a significant dynamic component (e.g., very slow mo-
tions with heavy fabric). We then extend this model by introducing
our latent linear dynamical system (Model B) to model dynamic
behavior of cloth in more realistic dynamic scenarios. Finally, we
augment model B with additional conditional dynamic terms that
result from un-modeled global motion of the character in the world
(encoded by meta-parameters). This last addition gives the final
form of our model that we refer to as Model C.

5.1 Conditional Kinematics (A)

The conditional kinematic process, in general, can be formulated
as a regression problem, where given a state of the body, xt, we
are interested in a function, yt = f(xt), that would map that state
to the corresponding state of cloth, yt. In the simplest form, this
function can take the form of Nearest Neighbor regression, where
given a query latent representation for the body, the closest cor-
responding body mesh (e.g., in terms of average vertex distance)
from the database can be found and the corresponding cloth state
returned. In our experiments, however, this approach proved both
noisy – due to the intractable size of the database required for fine
resolution retrieval, and expensive – because the NN method needs
to compare the query to every training exemplar in the database.
The earlier issue can be avoided by Kernel Regression techniques
that, in essence, average resulting cloth state over the set of nearest
neighbors. The latter can be addressed using approximate nearest
neighbor methods. However, this approach would still require stor-
age that is proportional to the number of exemplars in the database.
Such a solution would be impractical for models that span multiple
motions and activities.

To facilitate faster real-time performance and limited storage re-
quirements (making the model amenable to future GPU implemen-
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tations) we opt for an efficient linear (parametric) regression model.
We have also tested low-dimensional non-linear models (e.g., vari-
ants of Shared GPLVM) but found them to perform similarly, re-
quiring higher processing times and limiting the amount of training
data.

The resulting conditional model can be expressed compactly using
a single matrix multiplication:

yt = Axt, (3)

where A ∈ RMc×Mb is the matrix of learned regression coefficients
obtained by minimizing a least-squares objective, and Mc and Mb

are dimensions of the two latent spaces representing the cloth and
the surface of the body respectively.

5.2 Conditional Latent Linear Dynamical Systems (B)

Given a conditional model of the cloth, we now address the mod-
eling of the residual dynamics that cannot be accounted for by the
conditional kinematic model. For example, consider a case of a
woman abruptly stopping in mid-stride, as depicted in Figure 3.
While the pose and the surface of her body stops, her garment will
continue to move. These are precisely the effects that the current
skinned models cannot handle.

We express such stationary dynamics of the cloth in the latent space
using a 2-nd order linear dynamical system (LDS) [Kalman 1960].
The model of this form facilitates smoothness and continuity in the
motion of the cloth and can account for the dynamic effects such as
the one discussed above. Formally, 2-nd order LDS assumes that
the state of cloth at time t can be expressed as a linear combination
of the states at time t−1 and t−2. The conditional kinematics can
be interpreted, in this context, as a time-varying bias, resulting in:

yt = Axt +B1yt−1 +B2yt−2, (4)

where Bi ∈ RMc×Mc are matrices of coefficients to be learned.

This formulation can be trivially extended to the N-th order LDS,
but in our experiments, we demonstrate that a 2-nd order model
performs best; with 0-th (Model A) and 1-st order models providing
inferior performance, and 3-rd, 4-th and 5-th order models adding
complexity without noticeably improving performance (and in fact
suffering from overfitting).

The formulation in Eq. 4 can further be interpreted probabilistically
as a Kalman filter [Kalman 1960] designed to infer the state of the
cloth over time, under Gaussian assumptions on the noise of the
emission and transition. This interpretation relates our model to a
rich literature on state-estimation in control theory [Soderstrom and
Stoica 1989], and allows for a variety of learning procedures.

5.3 Residual Dynamics (C)

Because we learn to model cloth and dynamics in the canonical
space, some of the dynamics that are due to the change in the global
position and heading of the body are left un-modeled. Consider a
person turning left or right, for example. In this case the Model B
described above would be able to model the forward swing of the
dress, but not be able to model the twist in the appropriate direction
(precisely because we normalize our representation with respect to
the heading of the body). To account for this omission, we further
condition the dynamics on the relative motion of the root (along the
degrees of freedom that can not be accounted for in the canonical
space). For the 2-nd order model, we condition on the history over

Model A Model C

Figure 3: A simple conditional kinematics model (left) is not able
to account for the residual motion of the dress when the character
abruptly stops; a proposed 2-nd order LDS model can, on the other
hand, reproduces the desired residual motion.

the past two frames. This change adds two conditional terms to
Eq. 4 above, obtaining the final model:

yt = Axt +B1yt−1 +B2yt−2 + C1zt,t−2 + C2zt−1,t−2 (5)

where Ci ∈ RMc×5 are matrices of coefficients to be learned,
and zt,j are the meta-parameters encoding the relative position and
heading of the root at frame t with respect to frame j:

zt,j =




Rz(−rj)∆pt

sin(∆rt)
cos(∆rt)



 (6)

where ∆pt ≡ pt − pj , ∆rt ≡ rt − rj .

Notice that the representation of the cloth remains in the canon-
ical space, but the dynamics are now conditioned on the meta-
parameters (corresponding to the relative position and heading of
the root).

6 Learning

Given the additive form of our model, the simultaneous learning of
all parameters [A,B1, B2, C1, C2]

T (the same is true for models
A and B introduced earlier, and models with lower or higher order
dynamics) can be formulated simply by minimizing the squared er-
ror between the observed and predicted value for yt for a dataset
D consisting of temporal sequences of length 3 (or length N , for a
N -th order dynamical model):

min
A,B1,B2,C1,C2

�
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This formulation is a least-squares problem and can be solved by
standard techniques.

Once the parameters are learned, the state of the cloth can be pre-
dicted simply by conditioning on the latent parameterization of the
body, previous cloth states, and the relative position and heading of
the skeleton’s root. The predictions in the canonical space can then
be transformed into the world space for visualization. For initializa-
tion, because we typically do not have estimates for yt and yt−1,
we use a 0-th order model to bootstrap the process for the first two
frames, at which point we switch to the 2-nd order model.
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6.1 Stability

Interactive simulation requires stability guarantees. Because our
model is linear, its stability can be verified using eigen-analysis
[Siddiqi et al. 2007] which shows that all models learned by our
system are stable in that there is an energy threshold Ē above which
the energy will always be driven downwards: Et < Et−1. To show
this property, we rewrite equation (5) as

�
yt

yt−1

�
= M

�
yt−1

yt−2

�
+ kt−1 (7)

where

M =

�
B1 B2

I 0

�

encodes the linear dynamics and kt−1 accounts for all the addi-
tional terms in (5). Letting QΛQ−1 = M be the eigendecomposi-
tion of M , we can substitute qt = Q−1

�
yT
t ,y

T
t−1

�T and rewrite
(7) as:

qt = Λqt−1 +Q−1kt−1. (8)

Given this form, it is natural to define the energy in terms of q as
Et ≡ ||qt||. We can now use the triangle inequality to rewrite (8)
as

Et ≤ |λ|Et−1 + kmax, (9)

where λ is the largest eigenvalue of Λ, and kmax is a bound on
||Q−1k|| imposed by the limits on rotation, translation, and valid
human pose. Straightforward algebraic manipulation of (9) shows
that as long as λ < 1, our model is stable (in the above sense) with
energy threshold Ē = kmax/(1 − λ). This analysis shows that ev-
ery model learnt with our system is stable (Table 1) and no further
stability enforcement has been necessary. However in principle,
stability could be explicitly enforced by limiting the dimensionality
of the latent space, or through explicit constraints (§2).

6.2 Depth Consistency

Our method is able to construct models that approximately main-
tain depth consistency. However, in some situations the cloth may
penetrate the body (or vice-versa) for small periods of time due to
abrupt changes in acceleration or severe articulations. Such effects
could be reduced by increasing and/or balancing the training set.
However, we ues a simple rendering solution that alleviates such
problems and ensures pixel-level depth consistency in most cases.

Our solution consists of two steps. First, we pre-compute which
regions of the human body will always be occluded by the garment.
This step enables us to easily discard the fragments of the under-
lying human body that are always occluded for each character–
clothing pair. In addition, to alleviating depth inconsistencies, this
strategy is more efficient for rendering. Second, to render each
frame, we first render the human model(s). After all underlying
models are rendered, we save the depth map in a texture and use
it inside a simple fragment shader to compare the model’s stored
depth value dbody to the incoming depth value for the cloth frag-
ment dcloth. Instead of discarding the fragment of the cloth if
dcloth > dbody , we use a small threshold �depth and discard the
incoming cloth fragment only if dcloth + �depth > dbody . As seen
in the accompanying video and in the results section, this rendering
strategy enables us to not only properly render the resulting cloth
animations, but also generalizes well to characters with multiple
garments (e.g., shirt and pants, see Figure 1 left).

Runtime (sec/frame)
Mesh Resolution Stability Our Model
#Vert #Tri λ Simul Total Maya

dress 766 1,456 0.9798 4.8e-08 0.00049 0.37
dress3,410 3,410 6,664 0.9798 4.8e-08 0.00246 1.20
dress5,178 5,178 10,172 0.9757 4.8e-08 0.00377 1.90
dress20,530 20,530 40,688 0.9778 4.8e-08 0.01497 13.20
skirt1 820 1,572 0.8950 4.8e-08 0.00040 0.25
skirt2 820 1,572 0.9563 4.8e-08 0.00041 0.33
long skirt 766 1,456 0.9736 4.8e-08 0.00041 0.40
Oscar dress 820 1,582 0.9654 4.8e-08 0.00039 0.77
cape 2,242 4,296 0.9915 4.8e-08 0.00157 0.57
shirt 3,329 6,468 0.9983 4.8e-08 0.00245 0.76
pants 560 1,074 0.9735 4.8e-08 0.00020 2.36
poncho 2,450 4,692 0.9995 4.8e-08 0.00169 0.80

Table 1: The list of garments tested and their resolution, stability
criterion for all models, and comparison of run-time between our
method and Maya cloth (i.e., cloth simulator). Notice that all the
models are stable based on the λ < 1 criterion derived in Sec-
tion 6.1. Our models are also three orders of magnitude faster than
standard Maya cloth simulator. For our method we report the simu-
lation time (Eq. 5) and the total time (which includes reconstruction
of the mesh from low dimensional representation); the simulation
time is constant because all our models live in 64-dimensional sub-
space. The total time can further be improved by implementing the
reconstruction on a GPU. All timings were obtained on a desktop
machine with Intel R� CoreTM2 Quad 3GHz CPU with 8Gb of mem-
ory and NVIDIA Quadro FX 3800 graphics card.

7 Experiments and Results

We evaluated the proposed method both quantitatively and qualita-
tively. We explore how the performance of this model is affected
by choices in parameters and structure. We show that the proposed
model is effective in modeling the dynamic behavior of clothing
for a variety of motion capture sequences; we further show that
simpler models inherently do not capture some important aspects
of the clothing motion.

Datasets. We collected a training set of 33 atomic motion se-
quences (performed by a single male subject), using a Vicon mo-
tion capture system, consisting of: walking and running at three
different speeds; turns at 45◦, 90◦, 180◦ and 360◦; locomotion
with stops; ducking; jumping/leaping to avoid obstacles and some
transitions between these motions. We down-sampled all motion
capture data from 120 Hz to 30 Hz. We can simulate with a much
longer timestep then most cloth methods, yet our system remains
stable. The set of motions collected was designed to be appropri-
ate for constructing a motion graph consistent with the control of a
typical character in a game.

As test data, we collected a separate set of 15 motion capture se-
quences (up to 45 seconds each) from the same subject. The test set
consisted of arbitrary combinations of the motions from the training
set performed freely by the subject and at different speeds. The test
set contains a total of 9, 881 frames of motion capture data. Our
training and test sets are completely disjoint. We also collected two
additional sequences consisting of atomic motions (walk and walk
with a turn) to illustrate the ability of our method to handle a ro-
tational motion properly. Additionally a set of test sequences was
collected containing motions not in our training set to illustrate the
ability of our method to generalize, as well as to verify the limits of
the performance of the proposed method.

Training. We train one model across all motions in the training
set for each garment. We model four different garments for a male
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character and four for a female character. The list of garments and
their resolutions are given in Table 1. To test the dependence of
our method on mesh resolution, we construct four variants of the
same dress by sub-dividing the original model. We also construct
two models for the skirt that have the same geometry but different
cloth parameters. We train our model in two steps. First, PCA
latent space models for clothes and body are trained with 6, 609
meshes for the body (obtained by skinning a character in Maya) and
the corresponding clothing (produced by simulating the clothing
in Maya). Second, we train the motion model with an extended
set that we produce by stopping each training motion five times at
different locations uniformly (and simulating once again); resulting
in a semi redundant dataset of 5 × 6, 609 ≈ 33, 045 sequences of
length 2 (or N for N-th order model). This two-step training takes
on average 1.5 hours for our models on a single quad-core machine
and is dominated by the SVD computation in PCA.

We utilize average Euclidean vertex distance as the metric of per-
formance in our quantitative experiments. While this measure is not
perceptually faithful, lower error typically corresponds to visually
better performance, and allows us to quantitatively measure the per-
formance of our approach. We report all errors by averaging across
the entire test or training set respectively. All errors are in cm.

7.1 Quantitative Experiments

We first quantitatively explore the behavior of our model as a func-
tion of the parameter and the modeling choices. For convenience
and brevity, we focus on the dress for all quantitative experiments,
but the same trends can be observed on all of the garments that we
tested.

We first explore how the dimensionality of the PCA space af-
fects the performance (Table 2). While performance on the train-
ing set improves monotonically with dimensionality (as one would
expect), the performance on the test set clearly indicates that the
method starts to overfit in higher dimensions for all models. It also
appears that model B is more prone to overfitting than either A or
C. In lower dimensional spaces, modeling of dynamics leads to in-
ferior performance for models B and C, but clearly improves the
performance once the latent-space dimension is appropriate for the
exhibited class of motions. Qualitatively, models in the lower di-
mensional space damp out the motion of the cloth, making it look
“stiff”, as demonstrated in the accompanying video.

Second, we look at the ability of our model to represent rotational
motions. We do so by measuring the error on two additional atomic
motion sequences (not part of our test set): a walk and a walk with
a turn2. We find that the error for the latter is actually marginally
lower than for the first in all cases (2.24 versus 2.07 using a 64 di-
mensional model). This result suggests that we are able to model
the rotational swing of the dress. Furthermore, for such simple
(walking) motions the best performance is actually observed with a
32 dimensional model, suggesting that more compact models may
be appropriate for datasets that contain simpler or fewer motions.

Third, we look at the importance of the dynamics and the order
of the dynamical model. As with the dimensions, from Table 3, we
can see that the performance on the training set is monotonically in-
creasing, but shows signs of overfitting for the dynamics of orders
three or more. The best performance is achieved with the 2nd or-
der model C (with about 5% improvement over the model that does
not contain any dynamics – 0th order, Model A). This result is
perhaps not surprising, given that actual cloth dynamics in the high
dimensional space can be expressed as the 2-nd order differential

2Subject walks, stops and then turns the upper body without lifting the
feet.

Dimension of the Latent PCA Space
10 16 32 50 64 80 128

Tr
ai

n Model A 2.26 1.90 1.46 1.32 1.26 1.21 1.14
Model B 2.89 2.24 1.50 1.26 1.17 1.10 1.00
Model C 2.86 2.20 1.36 1.09 1.01 0.96 0.87

Te
st

Model A 2.37 2.04 1.51 1.40 1.37 1.32 1.44
Model B 2.99 2.48 1.62 1.43 1.36 1.37 1.56
Model C 3.33 2.58 1.59 1.38 1.32 1.34 1.49
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im
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-D
im
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D
im

 

 

No Error Max Vertex Error

Table 2: Performance of the 2-nd order model (Model C), the sim-
pler 2-nd order variant (Model B) and the pure conditional model
(A) as a function of the dimensionality of the PCA space repre-
senting the cloth and the body. The best performance on the test
set, corresponding to the proposed model, is in bold. Bottom rows
visually illustrate per vertex error (as compared to the Maya cloth
simulator) for four representative meshes obtained using C with 10,
64 and 128 dimensions; larger errors are illustrated with hot colors
(red), and lower error with colder colors (blue).

equation and the linear projection should not alter this 2-nd order
relationship. Also note the importance of the meta-parameters in
our formulation. The second column clearly shows that these pa-
rameters are very important in achieving the desired performance.

Fourth, we explore how the resolution of the clothing impacts the
performance of the learned model. Table 4 reports the performance
with the same dress but under 4 different mesh resolutions (obtained
by sub-division). In all cases, we are able to produce realistic mo-
tions; however, quantitatively the results degrade marginally with
resolution as we are not able to capture additional local structure
(details) with the same dimensionality of the model. This compar-
ison is not entirely fair, however, with respect to our model, be-
cause the simulation parameters in Maya are not dimension-less,
and hence the dynamics is slightly different at different resolutions.

7.2 Qualitative Performance

We also qualitatively evaluate the performance of our method by
animating and rendering virtual characters in real-time. We are
able to animate characters performing a variety of complex motions
with each of the garments, or combinations of them (e.g., shirt and
a skirt). Representative results from our method are illustrated in
Figures 1, 5 and 6, as well as in the accompanying video.

Figure 4 (left) illustrates the ability of our method to produce fine
detail, such as folds in the shirt that appear as the character starts to
turn. We also explored the ability of our model to capture dynamics
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Model A B C
Dynamics 0th 2nd 0th 1st 2nd 3rd 4th 5th
Train 1.26 1.17 1.26 1.25 1.01 0.99 0.97 0.96
Test 1.37 1.36 1.37 1.53 1.32 1.39 1.37 1.40

Model A Model B Model C

Table 3: We illustrate the effect of the order in the dynamical model
on the dress dataset. While performance on the training data mono-
tonically increases, the performance on the test set asymptotes at
the 2nd order model for Model C. As in Table 2, the bottom row
illustrates per vertex error for two meshes with models A, B, and C
(for B and C with 2-nd order dynamics).

Model C (2nd order dynamics, 64-dim)
Garment dress dress3,410 dress5,178 dress20,530
Test 1.32 1.58 1.70 1.66

Table 4: We illustrate the effect of the mesh resolution on the dress
dataset. The error increases marginally with increased resolutions,
but then asymptotes.

specific to a given fabric. To do so, we produced two datasets by
simulating the same cloth geometry with different cloth parameters
in Maya (see skirt1 and skirt2 in Table 1) and trained two separate
models. The results are illustrated in Figure 4 (right). As it is visible
in the figure and accompanying video the two models do capture the
subtle differences in the original dynamics.

In the video, we also compare the results obtained by our model
to the standard bone skinning produced by a skilled artist in Maya.
Our Model A (not Model C) can actually be interpreted as a gener-
alized form of skinning [James and Twigg 2005; Kry et al. 2002].
Unlike traditional bone skinning methods, however, it does not as-
sume that vertex positions are affected only by neighboring bones,
but rather allows a vertex to be affected by any bone in the body;
furthermore, our model also encodes an explicit prior over the plau-
sible resulting skinned meshes. These differences can account for
the better performance of our Model A with respect to Maya skin-
ning; Model C introduces an additional dynamical component and
further improves the performance.

We also test the ability of our method to generalize to motions out-
side of the training set. In the video, we illustrate how the learned
model can generalize to different execution speeds and styles (e.g.,
clothing for a stylized walk or a kick can be realistically rendered,
while neither were part of the training dataset); our method is also
able to deal with transitions between the motions in the training set
(e.g., walking to running). However, more severe deviations from
the training set (e.g., dancing), that fall well outside the realm of
articulations and dynamics observed, could lead to artifacts.

Runtime Performance. Because our method at runtime amounts
to three3 compact matrix multiplies, it can easily be implemented
on parallel hardware architectures, such as a GPU. In particular,
because the state of the body and the cloth are represented with
few parameters in the latent space, the communication to the GPU
can be minimized, reducing overhead. Our current implementa-
tion, however, does not take advantage of this fact and computes

3One to project the skinned body into the latent space, one to infer the
state of the cloth from the latent body representation, and one to re-project
the low-dimensional cloth state back to the high dimensional mesh.

Figure 4: The ability of our model to reproduce wrinkles and folds
in the cloth is illustrated on the left. We are also able to train sep-
arate models to reconstruct different materials as illustrated on the
right; notice the higher amplitude in the swing of the green skirt,
relative to the blue skirt that had higher damping and thickness.

Figure 5: Types of clothes handled by our method.

the models entirely on the CPU; subsequently passing the produced
geometries to the GPU for rendering. Yet, we are still able to
achieve three orders of magnitude speedup over Maya cloth sim-
ulation (see Table 1), and even with this naive implementation can
animate about 170 pieces of clothes in real-time (including ren-
dering); we are able to synthesize over 1, 000 models in real-time
(without rendering). Machine specifications are given in Table 1.

8 Discussion

We present a learning-based approach to model the dynamic be-
havior of clothing. Our conditional linear model is efficient, yet
allows us to model realistic and detailed clothing behaviors includ-
ing folding. We illustrate the performance of our method on a vari-
ety of garments and show that the learned models produce realistic
clothing behaviors for a diverse set of motions. We further analyze
the stability of our models and illustrate that they are indeed stable.
Finally, we show that within a linear class of methods, no simpler
model can handle the full range of cloth dynamics which we cap-
ture, by comparing the performance of our method to a number of
alternatives.

While our model is powerful, it does have a number of limitations.
First, we treat physical constraints as a black box, and learn the
physical interactions and phenomena only from the data. While
this formulation allows us to have a simple and efficient model,
it does hinder generalization. For example, our method may not
generalize to physical phenomena not observed in the training set
(e.g., external forces like wind, changes in gravitational constant,
etc.). Second, our approach does not model (at least explicitly) self
collisions of the cloth, making it hard to apply it in scenarios where
the body is significantly contorted or the clothing is highly dynamic.
We also found abrupt changes in accelerations, particularly at joint
limits, to be challenging for our model.

Our method approximately preserves depth consistency, but does
not guarantee it. We add a rendering method for fixing the depth
consistency in situations where there is a “near miss” and a slight
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Figure 6: Dynamic cloth motions recovered by our approach, for the Oscar dress (top) and for the normal dress (bottom).

inter-penetration occurs. In our experience, this works well in most
situations within the space of human motions and clothing styles
where our key assumptions hold, but it will fail when the motions
are highly dynamic or the cloth is essentially unconstrained by the
motion of the body.

We are able to deal effectively with a variety of fairly loose cloth-
ing styles (untucked shirt, A-line skirt, board shorts). While this
approach does not allow us to satisfactory handle very loose cloth-
ing, like a cape or a poncho, in all cases, it does allow us to deal
with much of the clothing worn by normal people on a daily basis
as well as much of that seen in current video games. We believe
that there is a significant and important space of dynamic clothing
motions between the almost skin tight clothing, that can be handled
by skinning algorithms, and the unrestricted motion of very loose
clothing, that must be directly simulated.

There is no guarantee that our learning technique will produce a
stable model, although it has for all the examples we tested. If the
learned model turns out to be unstable, we have several potential
solutions. One would be to iteratively decrease the number of di-
mensions in the latent space until stability is achieved. Another
alternative would be to use a method for learning inherently sta-
ble LDS [Lacy and Bernstein 2003; Siddiqi et al. 2007; Van Gestel
et al. 2001]. It is our belief that a relatively large amount of data
and the least-squares form of simultaneous learning for all the pa-
rameters are the factors that contribute to the stability of the learned
models in practice.

Despite the aforementioned limitations, our approach is ideal for
fast prototyping and games where real-time performance takes pri-
ority over time-consuming physical simulations. As it stands, it can
also be applied to dynamically controlled characters where, for ex-
ample, the speed or execution style for the motion of the virtual
character may be altered by the user within some tolerable bounds.
Our method is also amenable to other problems in computer graph-
ics. For example, it could be extended to modeling non-rigid dy-
namic deformations of the outer body surface based on skeletal mo-
tion (e.g., jiggling of the muscles or fat tissue). We also believe it
may be applicable for fast hair animation. Finally, our model could
accelerate high-resolution accurate cloth solvers by seeding each
step of an implicit method with an approximate first guess.

We plan to explore extensions to our method that would allow us
to parameterize the learned models with additional parameters such
as material properties. While we have shown that we can learn
models for a discrete set of materials, the current formulation is not

able to interpolate among materials to achieve novel appearances; to
do so, we are interested in looking at multi-linear models. We also
want to look at explicit collision maintenance with low-dimensional
models.
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